We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Innovative Injectable Gel Accelerates Tissue Healing

By HospiMedica International staff writers
Posted on 17 Jun 2015
Print article
Image: Tissue infiltrates the injectable MAP spheres gel fills, promoting regeneration (Photo courtesy of UCLA).
Image: Tissue infiltrates the injectable MAP spheres gel fills, promoting regeneration (Photo courtesy of UCLA).
A new hydrogel creates an instant scaffold of microporous annealed particles (MAP) that allows tissue regeneration to form within its cavities.

Developed by researchers at the University of California, Los Angeles (UCLA; USA), the injected hydrogel—filled with the microscopic synthetic polymer MAP spheres, each about the width of a human hair—forms a packed cluster that completely fills the wound cavity. New tissue quickly grows into the voids between the microspheres; as the MAP spheres degrade into the body, a matrix of repair tissue is left where the wound once was. New tissue then continues to grow until the wound is completely healed.

The researchers succeeded in demonstrating that the MAP hydrogel can promote the growth of new cells and formation of networks of connected cells at previously unseen rates. During in vivo tests, the researchers observed significant tissue regeneration in the first 48 hours, with much more healing over five days compared to other materials in use today. According to the researchers, the combination of microporosity and injectability will enable novel routes to tissue regeneration. The study was published on June 2, 2015, in Nature Materials.

“The beauty of the MAP gel is that there are no other added growth factors that other technologies require to attract cells into the material,” said study coauthor Westbrook Weaver, PhD, of the UCLA Henry Samueli School of Engineering and Applied Science. “The geometry of the MAP gel networks entices cells to migrate into the gel without the need for anything other than a cell adhesive peptide, so that the cells can grab onto the gels.”

Related Links:

University of California Los Angeles


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Body Composition Analyzer
seca mBCA Pro
New
Double Door Pharmacy Refrigerator
iPR256-GX

Print article

Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more