We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Stroke Patients Recover Arm Use with Virtual Reality

By HospiMedica International staff writers
Posted on 29 Jun 2015
Print article
Image: The Rehabilitation Gaming System (RGS) (Photo courtesy of Universitat Pompeu Fabra).
Image: The Rehabilitation Gaming System (RGS) (Photo courtesy of Universitat Pompeu Fabra).
A new study suggests that using virtual reality could assist arm rehabilitation in stroke patients and increase their confidence in using their paralyzed arm.

Researchers at Universitat Pompeu Fabra (UFP; Barcelona, Spain), Hospital Universitari Vall d'Hebron (Barcelona, Spain), and other institutions conducted a small pilot study in 20 hemiparetic stroke patients that played a Rehabilitation Gaming System (RGS) using a Microsoft Kinect sensor and optional gloves to track their movement. The system allowed the users to control a virtual body via their own movements on a computer screen, as seen from a first-person perspective.

The participants were asked to perform various tasks in a virtual world. In some of these tasks, the researchers enhanced the paretic limb’s virtual movements, making it appear faster, more accurate, and easier to reach the target on screen. These amplifications were introduced and suppressed in a gradual fashion to keep participants unaware of the manipulations. Following these manipulations, the participants’ performance in the unamplified task was recorded, including the likelihood of them using their paretic limb.

The researchers found that that there was a significantly higher probability that the patient would select their paretic limb for reaching towards a virtual target after the intervention, even when there was no amplification of movement in the session, and with the patient unaware of the previous session’s manipulation. After experiencing the amplification of the paretic limb in virtual reality, the patients also performed wider pointing movements towards targets appearing in the non-paretic workspace. The study was published in the June 2015 issue of Journal of NeuroEngineering and Rehabilitation.

“After enhancement of movement, patients started using their paretic limb more frequently. This suggests that changing patients' beliefs on their capabilities significantly improves the use of their paretic limb,” said lead author Belén Rubio, PhD, of the synthetic, perceptive, emotive, and cognitive systems lab at UFP. “This therapy could create a virtuous circle of recovery, in which positive feedback, spontaneous arm use, and motor performance can reinforce each other.”

Following stroke, loss of neural tissue induces drastic neurophysiological changes that often result in cognitive and motor impairments, such as hemiparesis; to counteract these deficits, patients tend to introduce compensatory movements, such as over-utilizing their non-paretic limb. Although these compensatory strategies may immediately improve functional motor performance in daily living or reduce the burden of using the paretic limb, a long period of non-use of the affected limb can lead to further loss of neural and behavioral function.

Related Links:
Universitat Pompeu Fabra
Hospital Universitari Vall d'Hebron

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Silver Member
Advanced 12-Lead Electrocardiograph with Printer
NECG SE-1200 Pro
New
Documentation System For Blood Banks
HettInfo II

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more