Touchless Vital Signs Monitor Could Detect Heart Problems Earlier
By HospiMedica International staff writers Posted on 19 Jan 2016 |

Image: Prof. Alexander Wong and Robert Amelard analyze blood-flow data extracted with the new touchless device (Photo courtesy of Fred Hunsberge/Waterloo University).
A novel system based on transmittance photoplethysmographic imaging (PPGI) can be used as an alternative for measuring blood pulse signals at a distance.
Developed by researchers at the University of Waterloo (Canada), the patent-pending device monitors a patient's blood flow at multiple arterial points simultaneously, without direct contact with the skin, using a technology called coded hemodynamic imaging; temporally coded illumination (TCI) is used for ambient light correction. The device relays the measurements from all of the pulse points to a signal processing pipeline for PPGI signal extraction, thus allowing for continuous monitoring.
Experimental results have shown that the processing steps yield a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation for both short- and long-distance monitoring. According to the researchers, long-distance heart rate monitoring using the device is ideal for assessing patients with painful burns, highly contagious diseases, or infants in neonatal intensive care units (nICUs), whose miniscule fingers make traditional monitoring difficult. The study was published on October 6, 2015, in Nature Scientific Reports.
“Since the device can also scan multiple patients individually at once and from a distance, consider the potential in mass emergency scenarios or long-term care homes,” said senior author Prof. Alexander Wong, PhD, of the faculty of engineering. “This technology provides for a more predictive approach to monitor vitals and the potential for its use is extensive, such as indicating arterial blockages that might otherwise go undetected, or warning older adults who risk falling as a result of getting dizzy when they stand.”
PPG was invented in the 1930’s to detect changes in light intensity, serving as a proxy measure for changes in blood volume in a particular area of the body. Until now, PPG has only been effective when it was used in close proximity with the patient's body, but the new device is equipped with sensors that are able detect hemodynamic waveforms from a distance.
Related Links:
University of Waterloo
Developed by researchers at the University of Waterloo (Canada), the patent-pending device monitors a patient's blood flow at multiple arterial points simultaneously, without direct contact with the skin, using a technology called coded hemodynamic imaging; temporally coded illumination (TCI) is used for ambient light correction. The device relays the measurements from all of the pulse points to a signal processing pipeline for PPGI signal extraction, thus allowing for continuous monitoring.
Experimental results have shown that the processing steps yield a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation for both short- and long-distance monitoring. According to the researchers, long-distance heart rate monitoring using the device is ideal for assessing patients with painful burns, highly contagious diseases, or infants in neonatal intensive care units (nICUs), whose miniscule fingers make traditional monitoring difficult. The study was published on October 6, 2015, in Nature Scientific Reports.
“Since the device can also scan multiple patients individually at once and from a distance, consider the potential in mass emergency scenarios or long-term care homes,” said senior author Prof. Alexander Wong, PhD, of the faculty of engineering. “This technology provides for a more predictive approach to monitor vitals and the potential for its use is extensive, such as indicating arterial blockages that might otherwise go undetected, or warning older adults who risk falling as a result of getting dizzy when they stand.”
PPG was invented in the 1930’s to detect changes in light intensity, serving as a proxy measure for changes in blood volume in a particular area of the body. Until now, PPG has only been effective when it was used in close proximity with the patient's body, but the new device is equipped with sensors that are able detect hemodynamic waveforms from a distance.
Related Links:
University of Waterloo
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more