Cardiac Cell Stimulation Could Provide Natural Pacemaker
By HospiMedica International staff writers Posted on 26 Jan 2016 |

Image: Schematic representation of the experimental setup (Photo courtesy of Israel Institute of Technology).
A new study reveals that mechanical communication between cells plays an important role in cardiac physiology, and is essential for converting electrical pacing into synchronized beating.
Researchers at the Israel Institute of Technology (Technion; Haifa, Israel) developed a mechanical “cardiac cell” that generates periodic mechanical deformations in an underlying substrate, with the amplitude and direction of the mechanical deformations mimicking those generated by a beating cardiac cell. After a brief 10-minute training period, a neighboring cardiac cell synchronized its beat rate with that of the mechanical cell. According to the researchers, the study demonstrates mechanical communication between cells directly for the first time.
Furthermore, the cardiac cell maintained the induced beating rate for more than one hour after mechanical stimulation was stopped, implying a long-range interaction of the stimulation that induces long-lasting alterations in interacting cells. Unlike electrical field stimulation, the long-term alterations provide a mechanism that has a more stable electromechanical delay. The mechanical coupling between cells could therefore ensure that the final outcome of action potential pacing is synchronized beating. The study was published on January 11, 2016, in Nature Physics.
“We have shown that cells are able to communicate with each other mechanically by responding to deformations created by their neighbors. Cell-cell communication is essential for growth, development and function,” said assistant professor Shelly Tzlil, PhD, of the faculty of mechanical engineering. “Impaired mechanical communication will lead to arrhythmias even when electrical conduction is working properly. The medical implication is that adding mechanical elements to electrical pacemakers will significantly improve their efficiency.”
Related Links:
Israel Institute of Technology
Researchers at the Israel Institute of Technology (Technion; Haifa, Israel) developed a mechanical “cardiac cell” that generates periodic mechanical deformations in an underlying substrate, with the amplitude and direction of the mechanical deformations mimicking those generated by a beating cardiac cell. After a brief 10-minute training period, a neighboring cardiac cell synchronized its beat rate with that of the mechanical cell. According to the researchers, the study demonstrates mechanical communication between cells directly for the first time.
Furthermore, the cardiac cell maintained the induced beating rate for more than one hour after mechanical stimulation was stopped, implying a long-range interaction of the stimulation that induces long-lasting alterations in interacting cells. Unlike electrical field stimulation, the long-term alterations provide a mechanism that has a more stable electromechanical delay. The mechanical coupling between cells could therefore ensure that the final outcome of action potential pacing is synchronized beating. The study was published on January 11, 2016, in Nature Physics.
“We have shown that cells are able to communicate with each other mechanically by responding to deformations created by their neighbors. Cell-cell communication is essential for growth, development and function,” said assistant professor Shelly Tzlil, PhD, of the faculty of mechanical engineering. “Impaired mechanical communication will lead to arrhythmias even when electrical conduction is working properly. The medical implication is that adding mechanical elements to electrical pacemakers will significantly improve their efficiency.”
Related Links:
Israel Institute of Technology
Latest Critical Care News
- Smart Bandage Monitors Chronic Wounds in Human Patients
- AI Identifies Patients with Increased Lung Cancer Risk Up To 4 Months Earlier
- Next Gen Hemodynamic Monitoring Solution Provides AI-Driven Clinical Decision Support
- AI Algorithm Identifies High-Risk Heart Patients
- Wearable Glucose Monitor Offers Less Invasive Approach to Assessing Diabetes Risk
- Wireless, Self-Powered Smart Insole to Improve Personal Health Monitoring
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
Channels
Surgical Techniques
view channel
DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment
One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more