Ring-Shaped Pump Supports Weakened Hearts
By HospiMedica International staff writers Posted on 12 Jul 2016 |

Image: The DEAP ring pump (Photo courtesy of the École Polytechnique Fédérale de Lausanne).
An innovative cardiac support system uses peristaltic motion to help the heart pump and transport blood.
Developed by researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland), the miniature pump is made of three tiny rings placed around the aorta at the exact spot where it exits the left ventricle. The rings are made of a dielectric electro active polymer (DEAP) with special electrical properties. Each ring has two electrodes that are drawn together by an electrostatic force whenever the electric pulse, provided by magnetic induction, is activated.
Each of the three rings contracts in sequence, in a movement reminiscent of an earthworm. The series of contractions, called peristalsis, creates a wave that moves the blood inside the artery. The double action, both vertical and horizontal, occurs simultaneously and immediately, creating a back-and-forth movement that can be controlled in real time. And since the pump ring does not come into direct contact with the blood, it avoids problems of hemolysis and the subsequent need for regular blood transfusions to replenish the damaged red blood cells (RBCs).
“This method does not require us to enter the heart; this means it is significantly less invasive than other cardiac support systems, which work by implanting valves or screw pumps inside the ventricle,” said Yves Perriard, director of the EPFL Integrated Actuators Laboratory (LAI). “The absence of valves and other components used in current methods to provide cardiac support doesn’t just lessen the possibility of hemolysis. It also makes the insertion and removal of the device significantly easier for surgeons.
The DEAP peristaltic pump is currently in prototype stage. The researchers plan to improve the device’s performance before testing it on a liquid with similar fluidic properties to those of the blood, such as glycerol. The researchers are also in contact with the University Hospital of Bern (Switzerland), where clinical trials could be conducted.
Related Links:
Ecole Polytechnique Fédérale de Lausanne
Developed by researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland), the miniature pump is made of three tiny rings placed around the aorta at the exact spot where it exits the left ventricle. The rings are made of a dielectric electro active polymer (DEAP) with special electrical properties. Each ring has two electrodes that are drawn together by an electrostatic force whenever the electric pulse, provided by magnetic induction, is activated.
Each of the three rings contracts in sequence, in a movement reminiscent of an earthworm. The series of contractions, called peristalsis, creates a wave that moves the blood inside the artery. The double action, both vertical and horizontal, occurs simultaneously and immediately, creating a back-and-forth movement that can be controlled in real time. And since the pump ring does not come into direct contact with the blood, it avoids problems of hemolysis and the subsequent need for regular blood transfusions to replenish the damaged red blood cells (RBCs).
“This method does not require us to enter the heart; this means it is significantly less invasive than other cardiac support systems, which work by implanting valves or screw pumps inside the ventricle,” said Yves Perriard, director of the EPFL Integrated Actuators Laboratory (LAI). “The absence of valves and other components used in current methods to provide cardiac support doesn’t just lessen the possibility of hemolysis. It also makes the insertion and removal of the device significantly easier for surgeons.
The DEAP peristaltic pump is currently in prototype stage. The researchers plan to improve the device’s performance before testing it on a liquid with similar fluidic properties to those of the blood, such as glycerol. The researchers are also in contact with the University Hospital of Bern (Switzerland), where clinical trials could be conducted.
Related Links:
Ecole Polytechnique Fédérale de Lausanne
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more