Bioprinted Patch Helps Hearts Recover Following MI
By HospiMedica International staff writers Posted on 24 Apr 2017 |

Image: The 3D-bioprinted cell patch on top of a mouse heart (Photo courtesy of Patrick O’Leary/UMN).
A new study describes how a novel three-dimensional (3D) printing technique can produce biological scaffolds that significantly improve recovery from an ischemic myocardial infarct (MI).
Developed by researchers at the University of Minnesota, the University of Alabama, and the University of Wisconsin, the human-induced cardiac muscle patch (hCMP) is an extracellular matrix (ECM) scaffold with submicron resolution manufactured using a multiphoton-excited (MPE) 3D printer. The patch is seeded with 50,000 cardiomyocytes, smooth muscle cells, and endothelial cells in a 2:1:1 ratio, derived from human-induced pluripotent stem cells.
In a murine model, the hCMP-seeded ECM scaffold began generating calcium transients and beating synchronously within one day of seeding; speed of contraction and relaxation, and peak amplitudes of the calcium transients increased significantly over the next seven days. In mice with surgically induced MI, measurements of cardiac function, infarct size, apoptosis, vascular and arteriole density, and cell proliferation one month after treatment were significantly better in mice treated with the hCMPs than in those treated with cell-free scaffolds. The study was published on April 14, 2017, in Circulation Research.
“The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution, needed to mimic structures of native heart tissue,” said senior author associate professor of biomedical engineering Brenda Ogle, PhD, of UMN. “We were quite surprised by how well it worked, given the complexity of the heart. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.”
Printers that use single-photon excitation coupled to a sequence of photomasks can achieve around 30-μm resolution. The more advanced technique, MPE photochemistry, can restrict excitation in 3D via a method analogous to multiphoton laser scanning microscopy. A resolution of less than one μm can be determined by the MPE point spread function, and can thus approximate the size of components of native ECM. The technique can also be combined with rapid prototyping and computer-aided design to fabricate essentially any 3D structure.
Developed by researchers at the University of Minnesota, the University of Alabama, and the University of Wisconsin, the human-induced cardiac muscle patch (hCMP) is an extracellular matrix (ECM) scaffold with submicron resolution manufactured using a multiphoton-excited (MPE) 3D printer. The patch is seeded with 50,000 cardiomyocytes, smooth muscle cells, and endothelial cells in a 2:1:1 ratio, derived from human-induced pluripotent stem cells.
In a murine model, the hCMP-seeded ECM scaffold began generating calcium transients and beating synchronously within one day of seeding; speed of contraction and relaxation, and peak amplitudes of the calcium transients increased significantly over the next seven days. In mice with surgically induced MI, measurements of cardiac function, infarct size, apoptosis, vascular and arteriole density, and cell proliferation one month after treatment were significantly better in mice treated with the hCMPs than in those treated with cell-free scaffolds. The study was published on April 14, 2017, in Circulation Research.
“The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution, needed to mimic structures of native heart tissue,” said senior author associate professor of biomedical engineering Brenda Ogle, PhD, of UMN. “We were quite surprised by how well it worked, given the complexity of the heart. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.”
Printers that use single-photon excitation coupled to a sequence of photomasks can achieve around 30-μm resolution. The more advanced technique, MPE photochemistry, can restrict excitation in 3D via a method analogous to multiphoton laser scanning microscopy. A resolution of less than one μm can be determined by the MPE point spread function, and can thus approximate the size of components of native ECM. The technique can also be combined with rapid prototyping and computer-aided design to fabricate essentially any 3D structure.
Latest Surgical Techniques News
- Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
- Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
- World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
- AI-Generated Synthetic Scarred Hearts Aid Atrial Fibrillation Treatment
- New Class of Bioadhesives to Connect Human Tissues to Long-Term Medical Implants
- New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
- Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
- Tiny Robotic Tools Powered by Magnetic Fields to Enable Minimally Invasive Brain Surgery
- Magnetic Tweezers Make Robotic Surgery Safer and More Precise
- AI-Powered Surgical Planning Tool Improves Pre-Op Planning
- Novel Sensing System Restores Missing Sense of Touch in Minimally Invasive Surgery
- Headset-Based AR Navigation System Improves EVD Placement
- Higher Electrode Density Improves Epilepsy Surgery by Pinpointing Where Seizures Begin
- Open-Source Tool Optimizes Placement of Visual Brain Implants
- Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
- Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more