Novel Skin Patch Offers Solution to Antibiotic Resistance
By HospiMedica International staff writers Posted on 18 Jan 2018 |

Image: An example of a hydrogel microneedle patch (Photo courtesy of Ryan Donnelly/QUB).
A new study describes how a microarray patch that administers drugs directly into the bloodstream could provide an answer to the antibiotic resistance crisis.
Under development at Queen's University Belfast (QUB; United Kingdom), the unique antibiotic patch containing multiple 400 μm hydrogel-forming microneedle arrays that painlessly pierce the skin, turning into a gel-like material that consistently keeps the micropores open at an approximate 200 μm diameter. This provides a new avenue for delivering antibiotics directly into the bloodstream, thus bypassing the antibiotic-resistant gut bacteria and extending the lifespan of currently available antibiotics.
According to the researchers, oral administration of antibiotics contributes significantly to development of antibiotic resistance, since small quantities of the drug often finds its way into the colon, a perfect breeding ground for imminent drug-resistant bacteria. Injection of the antibiotic directly into the blood stream can significantly reduce the development of resistance amongst gut bacteria relative to oral administration, especially if the antibiotic is predominantly excreted through the kidneys. The study was published on December 2, 2017, in Journal of Controlled Release.
“For the first time, we’re in control of the rate at which medicine goes into the skin. We hope to show that this unique antibiotic patch prevents resistance development,” said study co-author professor of pharmaceutical technology Ryan Donnelly, PhD. “If we are successful, this approach will significantly extend the lifespan of existing antibiotics, allowing time for development of the next generation of antibiotics. In doing so, this work has the potential to save many lives.”
Microneedles as a technique for drug delivery enhancement were primarily designed for facilitating percutaneous drug delivery. Since the emergence of solid microneedles two decades ago, which simply pierced the stratum corneum in order to enhance topical drug delivery, the technique has progressed in various modifications such as hollow, coated, dissolving, and hydrogel forming microneedles. In their turn, the modifications have resulted in new mechanisms of drug delivery enhancement, followed by an expansion of applicability range in terms of targeted tissues and organs.
Related Links:
Queen's University Belfast
Under development at Queen's University Belfast (QUB; United Kingdom), the unique antibiotic patch containing multiple 400 μm hydrogel-forming microneedle arrays that painlessly pierce the skin, turning into a gel-like material that consistently keeps the micropores open at an approximate 200 μm diameter. This provides a new avenue for delivering antibiotics directly into the bloodstream, thus bypassing the antibiotic-resistant gut bacteria and extending the lifespan of currently available antibiotics.
According to the researchers, oral administration of antibiotics contributes significantly to development of antibiotic resistance, since small quantities of the drug often finds its way into the colon, a perfect breeding ground for imminent drug-resistant bacteria. Injection of the antibiotic directly into the blood stream can significantly reduce the development of resistance amongst gut bacteria relative to oral administration, especially if the antibiotic is predominantly excreted through the kidneys. The study was published on December 2, 2017, in Journal of Controlled Release.
“For the first time, we’re in control of the rate at which medicine goes into the skin. We hope to show that this unique antibiotic patch prevents resistance development,” said study co-author professor of pharmaceutical technology Ryan Donnelly, PhD. “If we are successful, this approach will significantly extend the lifespan of existing antibiotics, allowing time for development of the next generation of antibiotics. In doing so, this work has the potential to save many lives.”
Microneedles as a technique for drug delivery enhancement were primarily designed for facilitating percutaneous drug delivery. Since the emergence of solid microneedles two decades ago, which simply pierced the stratum corneum in order to enhance topical drug delivery, the technique has progressed in various modifications such as hollow, coated, dissolving, and hydrogel forming microneedles. In their turn, the modifications have resulted in new mechanisms of drug delivery enhancement, followed by an expansion of applicability range in terms of targeted tissues and organs.
Related Links:
Queen's University Belfast
Latest Critical Care News
- Smart Bandage Monitors Chronic Wounds in Human Patients
- AI Identifies Patients with Increased Lung Cancer Risk Up To 4 Months Earlier
- Next Gen Hemodynamic Monitoring Solution Provides AI-Driven Clinical Decision Support
- AI Algorithm Identifies High-Risk Heart Patients
- Wearable Glucose Monitor Offers Less Invasive Approach to Assessing Diabetes Risk
- Wireless, Self-Powered Smart Insole to Improve Personal Health Monitoring
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
Channels
Surgical Techniques
view channel
DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment
One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more