Xenon Gas May Mitigate Blast-Induced Brain Injury
By HospiMedica International staff writers Posted on 08 Mar 2018 |

Image: A new study suggests xenon gas may protect the brain from blast trauma (Photo courtesy of ICL).
A new study demonstrates that xenon treatment after blast traumatic brain injury (bTBI) reduces initial injury and prevents subsequent injury development.
Researchers at Imperial College London (ICL; United Kingdom), the Royal Centre for Defence Medicine (RCDM; Birmingham, United Kingdom), and other institutions conducted a murine study that examined slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs). Using a dye that highlights damaged brain cells, the researchers were able to monitor injury development up to three days after exposure.
They then compared brain slices of mice given xenon treatment starting one hour after exposure to slices of mice exposed to blast, but without xenon treatment, assessing injury development at 24, 48, and 72 hours using propidium iodide fluorescence. They found that slices treated with xenon suffered significantly less injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon gas prevented injury from developing. The study was published on February 8, 2018, in the Journal of Neurotrauma.
“One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible,” said lead author Rita Campos-Pires, PhD, of ICL. “Xenon could be delivered easily by inhalation shortly after brain injury with relatively simple equipment. In addition to its potential for arresting injury development, xenon has an additional advantage of simultaneously providing analgesia.”
Xenon is a nonflammable inert gas that has been used as a general anesthetic since the 1950s. It is a pleiotropic drug known to act via a number of targets implicated in secondary injury development, including inhibition of N-methyl-D-aspartate receptors, activation of potassium channels, and anti-apoptotic action. Xenon has a number of unique advantages, including not being metabolized and rapidly crossing the blood–brain barrier, facilitating a rapid onset and offset of action, within minutes.
Researchers at Imperial College London (ICL; United Kingdom), the Royal Centre for Defence Medicine (RCDM; Birmingham, United Kingdom), and other institutions conducted a murine study that examined slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs). Using a dye that highlights damaged brain cells, the researchers were able to monitor injury development up to three days after exposure.
They then compared brain slices of mice given xenon treatment starting one hour after exposure to slices of mice exposed to blast, but without xenon treatment, assessing injury development at 24, 48, and 72 hours using propidium iodide fluorescence. They found that slices treated with xenon suffered significantly less injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon gas prevented injury from developing. The study was published on February 8, 2018, in the Journal of Neurotrauma.
“One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible,” said lead author Rita Campos-Pires, PhD, of ICL. “Xenon could be delivered easily by inhalation shortly after brain injury with relatively simple equipment. In addition to its potential for arresting injury development, xenon has an additional advantage of simultaneously providing analgesia.”
Xenon is a nonflammable inert gas that has been used as a general anesthetic since the 1950s. It is a pleiotropic drug known to act via a number of targets implicated in secondary injury development, including inhibition of N-methyl-D-aspartate receptors, activation of potassium channels, and anti-apoptotic action. Xenon has a number of unique advantages, including not being metabolized and rapidly crossing the blood–brain barrier, facilitating a rapid onset and offset of action, within minutes.
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more