Algorithm Accurately Predicts Heart Failure Survival
By HospiMedica International staff writers Posted on 30 May 2018 |

Image: The Trees of Predictors algorithm uses machine learning and 53 data points to more accurately predict life expectancy after heart failure (Photo courtesy of UCLA).
A team of researchers from UCLA (Los Angeles, USA) have developed a new algorithm that more accurately predicts which people will survive heart failure and for how long, as well as whether they will receive a heart transplant or not. The algorithm will allow doctors to carry out more personalized assessments of people awaiting heart transplants, thus enabling health care providers to efficiently use limited life-saving resources and reduce health care costs.
The algorithm, named Trees of Predictors, uses machine learning and takes into consideration 53 data points, including age, gender, body mass index, blood type and blood chemistry, to address the differences between people awaiting heart transplants and the compatibility between potential heart transplant recipients and donors. Using these data points, the algorithm predicts how long people with heart failure will live, depending upon whether they will receive a transplant or not. The algorithm can also analyze different possible risk scenarios for potential transplant candidates in order to assist doctors to more thoroughly assess people who can be candidates for heart transplants, and is flexible enough to incorporate more data as treatments evolve.
The UCLA researchers tested the algorithm using 30 years of data on people registered with the United Network for Organ Sharing, a non-profit organization that matches donors and transplant recipients in the US. The researchers found the algorithm provided significantly better predictions than the prediction models currently used by most doctors to project, which transplant recipients would live for at least three years after a transplant. The UCLA algorithm outperformed the models by 14% by correctly predicting that 2,442 more heart transplant recipients of the 17,441 who had received transplants and lived at least that long after the surgery. According to the researchers, the Trees of Predictors algorithm can also be used to gather insights from medical databases and various other types of complex databases.
“Our work suggests that more lives could be saved with the application of this new machine-learning–based algorithm,” said Mihaela van der Schaar, Chancellor’s Professor of Electrical and Computer Engineering at the UCLA Samueli School of Engineering, who led the study. “It would be especially useful for determining which patients need heart transplants most urgently and which patients are good candidates for bridge therapies such as implanted mechanical-assist devices.”
“Following this method, we are able to identify a significant number of patients who are good transplant candidates but were not identified as such by traditional approaches,” said Dr. Martin Cadeiras, a cardiologist at the David Geffen School of Medicine at UCLA. “This methodology better resembles the human thinking process by allowing multiple alternative solutions for the same problem but taking into consideration the variability of each individual.”
Related Links:
UCLA
The algorithm, named Trees of Predictors, uses machine learning and takes into consideration 53 data points, including age, gender, body mass index, blood type and blood chemistry, to address the differences between people awaiting heart transplants and the compatibility between potential heart transplant recipients and donors. Using these data points, the algorithm predicts how long people with heart failure will live, depending upon whether they will receive a transplant or not. The algorithm can also analyze different possible risk scenarios for potential transplant candidates in order to assist doctors to more thoroughly assess people who can be candidates for heart transplants, and is flexible enough to incorporate more data as treatments evolve.
The UCLA researchers tested the algorithm using 30 years of data on people registered with the United Network for Organ Sharing, a non-profit organization that matches donors and transplant recipients in the US. The researchers found the algorithm provided significantly better predictions than the prediction models currently used by most doctors to project, which transplant recipients would live for at least three years after a transplant. The UCLA algorithm outperformed the models by 14% by correctly predicting that 2,442 more heart transplant recipients of the 17,441 who had received transplants and lived at least that long after the surgery. According to the researchers, the Trees of Predictors algorithm can also be used to gather insights from medical databases and various other types of complex databases.
“Our work suggests that more lives could be saved with the application of this new machine-learning–based algorithm,” said Mihaela van der Schaar, Chancellor’s Professor of Electrical and Computer Engineering at the UCLA Samueli School of Engineering, who led the study. “It would be especially useful for determining which patients need heart transplants most urgently and which patients are good candidates for bridge therapies such as implanted mechanical-assist devices.”
“Following this method, we are able to identify a significant number of patients who are good transplant candidates but were not identified as such by traditional approaches,” said Dr. Martin Cadeiras, a cardiologist at the David Geffen School of Medicine at UCLA. “This methodology better resembles the human thinking process by allowing multiple alternative solutions for the same problem but taking into consideration the variability of each individual.”
Related Links:
UCLA
Latest Business News
- Expanded Collaboration to Transform OR Technology Through AI and Automation
- Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
- Boston Scientific Acquires Medical Device Company SoniVie
- 2026 World Hospital Congress to be Held in Seoul
- Teleflex to Acquire BIOTRONIK’s Vascular Intervention Business
- Philips and Mass General Brigham Collaborate on Improving Patient Care with Live AI-Powered Insights
- Arab Health 2025 Celebrates Landmark 50th Edition
- Boston Scientific Acquires Medical Device Company Intera Oncology
- MEDICA 2024 to Highlight Hot Topics of MedTech Industry
- Start-Ups To Once Again Play Starring Role at MEDICA 2024
- Boston Scientific to Acquire AFib Ablation Company Cortex
- Hologic Acquires Gynesonics to Strengthen Existing Gynecological Surgical Business
- Smith+Nephew and JointVue Partner on Ultrasound Preoperative Planning in Robotics-Assisted Surgery
- Stryker Completes Acquisition of NICO Corporation
- BD Completes Acquisition of Critical Care from Edwards Lifesciences
- ZOLL to Acquire Vyaire Medical’s Ventilator Business
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read moreSurgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more