AI Outperforms Humans in Diagnosis of Skin Lesions
By HospiMedica International staff writers Posted on 26 Jun 2019 |
A new study shows that artificial intelligence (AI) machine-learning (ML) classifiers outperform human experts in the diagnosis of pigmented skin lesions.
Researchers at the Medical University of Vienna (MedUni; Austria), the University of Queensland (UQ; Brisbane, Australia), Tel Aviv University (TAU; Israel), and other member institutions of the International Skin Imaging Collaboration (ISIC) organized an international challenge to compare the diagnostic skills of 511 physicians with 139 computer algorithms from 77 different ML labs. A database of more than 10,000 images was used as a training set for the machines.
The database includes both benign and malignant pigmented lesions, which fell into one of seven pre-defined disease categories. These included intraepithelial carcinoma, including actinic keratoses and Bowen's disease; basal cell carcinoma; benign keratinocytic lesions, including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch between all human readers and the top three algorithms, and between human experts and the top three algorithms.
The results revealed that when comparing all human readers with all ML algorithms, the algorithms achieved a mean of 2.01 more correct diagnoses than the human readers. The 27 human experts with more than 10 years of experience achieved a mean of 18.78 correct answers, compared with 25.43 correct answers for the top three machine algorithms. For images in the test set that were collected from sources not included in the training set, humans still underperformed, but the difference was lower, at 11.4%. The study was published on June 11, 2019, in The Lancet Oncology.
“Two thirds of all participating machines were better than humans; this does not mean that the machines will replace humans in the diagnosis of skin cancer. The computer only analyzes an optical snapshot and is really good at it. In real life, however, the diagnosis is a complex task,” said lead author Philipp Tschandl, PhD, of MedUni Vienna. “Physicians usually examine the entire patient and not just single lesions. When humans make a diagnosis they also take additional information into account, such as the duration of the disease, whether the patient is at high or low risk, and the age of the patient.”
The rising popularity of ML techniques for medical applications is evident from the increasing amount of research, the number of products obtaining regulatory approvals, and entrepreneurial efforts over the past few years. Venture capital funding for healthcare AI startup companies was about USD 3.6 billion in the last five years, underscoring the increasing appreciation of the value that ML can potentially bring to the medical community.
Related Links:
Medical University of Vienna
University of Queensland
Tel Aviv University
Researchers at the Medical University of Vienna (MedUni; Austria), the University of Queensland (UQ; Brisbane, Australia), Tel Aviv University (TAU; Israel), and other member institutions of the International Skin Imaging Collaboration (ISIC) organized an international challenge to compare the diagnostic skills of 511 physicians with 139 computer algorithms from 77 different ML labs. A database of more than 10,000 images was used as a training set for the machines.
The database includes both benign and malignant pigmented lesions, which fell into one of seven pre-defined disease categories. These included intraepithelial carcinoma, including actinic keratoses and Bowen's disease; basal cell carcinoma; benign keratinocytic lesions, including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch between all human readers and the top three algorithms, and between human experts and the top three algorithms.
The results revealed that when comparing all human readers with all ML algorithms, the algorithms achieved a mean of 2.01 more correct diagnoses than the human readers. The 27 human experts with more than 10 years of experience achieved a mean of 18.78 correct answers, compared with 25.43 correct answers for the top three machine algorithms. For images in the test set that were collected from sources not included in the training set, humans still underperformed, but the difference was lower, at 11.4%. The study was published on June 11, 2019, in The Lancet Oncology.
“Two thirds of all participating machines were better than humans; this does not mean that the machines will replace humans in the diagnosis of skin cancer. The computer only analyzes an optical snapshot and is really good at it. In real life, however, the diagnosis is a complex task,” said lead author Philipp Tschandl, PhD, of MedUni Vienna. “Physicians usually examine the entire patient and not just single lesions. When humans make a diagnosis they also take additional information into account, such as the duration of the disease, whether the patient is at high or low risk, and the age of the patient.”
The rising popularity of ML techniques for medical applications is evident from the increasing amount of research, the number of products obtaining regulatory approvals, and entrepreneurial efforts over the past few years. Venture capital funding for healthcare AI startup companies was about USD 3.6 billion in the last five years, underscoring the increasing appreciation of the value that ML can potentially bring to the medical community.
Related Links:
Medical University of Vienna
University of Queensland
Tel Aviv University
Latest AI News
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read moreSurgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more