Heart Valve That Grows Along With Child Could Reduce Invasive Surgeries
By HospiMedica International staff writers Posted on 07 Feb 2023 |

In children with congenital pulmonary valve disease, the flow of blood between the heart and lungs is impeded. In cases where the pulmonary valves have narrowed or are leaking and cannot be treated effectively with a catheter, surgeons generally replace them with a prosthetic valve. However, the current prosthetic pulmonary valves are adult-sized and have a fixed diameter, as a result of which they must be replaced as the child grows up. Now, for the first time, a prosthetic pulmonary valve replacement specifically designed for pediatric patients can expand over time inside a child’s anatomy. The valve can be fitted to the child’s individual body size and also adjusted for size if required through a minimally-invasive transcatheter balloon dilation procedure to maintain blood flow. This could eliminate the need to perform invasive replacement surgeries every few years as the child will not require another replacement procedure until reaching adulthood.
The revolutionary device, known as the Autus Valve, was invented at Boston Children’s Hospital (Boston, MA, USA) and was first implanted in a young patient in late 2021 as part of a collaborative clinical study. In commercially available prosthetic heart valves, there are three leaflets that operate as flaps for controlling blood flow, thereby imitating the tri-leaflet structure of the human aortic valve. For developing the heart valve, the researchers drew inspiration from a device that mimicked the bi-leaflet function of a venous valve in leg veins, as its two elastic flaps possess the perfect geometry for maintaining proper closure and one-way blood flow even after the veins in the leg expand in diameter. The team believed that this process could also work in the heart and went on to study the geometric profile of the human venous valve while using this as the basis for creating a valve prototype.
The researchers conducted studies in which they implanted prototypes of the replacement pulmonary valve in growing lambs and found that the device can be fitted and then expanded in sync along with the growth of heart anatomy. They also found that the valve could successfully maintain the control of blood flow without stretching and compromising the device’s frame or material. The two leaflets in the device are made of a polymer which has a long track record of use as a pediatric pulmonary valve leaflet. Before being implanted, doctors can adjust the valve diameter to match a patient’s heart anatomy. After the device is implanted, cardiac catheterization specialists can expand the valve if it becomes too small after a child’s grows quickly by using a catheter balloon. Using an echocardiogram, doctors can assess the valve’s integrity and how well it is controlling the flow of blood. Boston Children’s is now conducting US FDA-approved early clinical studies to examine the valve’s effectiveness in children aged between 2 to 11 years. The initial study will be followed by a larger clinical trial, with the aim of seeking FDA approval for making the device commercially available.
“It’s exciting and incredibly motivating that we’re at the stage where we can actually see the device helping patients,” said the device’s inventor, Sophie-Charlotte Hofferberth, MD. “If a valve expansion is needed after the device is implanted, we anticipate a child would recover from the procedure within a few hours,”
“There is a huge need for better solutions for children with valve disease,” Hofferberth added. “A pulmonary valve that can be adjusted for size could give young patients a bridge through childhood and have a huge impact on their long-term quality of life.”
Related Links:
Boston Children’s Hospital
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more