Robotic Surgical System Allows Surgeons to Perform 4-Handed Laparoscopic Procedures
By HospiMedica International staff writers Posted on 10 Jul 2023 |

Scientists have developed the first-ever surgical system that facilitates four-arm laparoscopic surgery by allowing surgeons to control two supplementary robotic arms using haptic foot interfaces. This remarkable achievement integrates multi-limb manipulation with cutting-edge shared control augmentation, marking a significant milestone in the field of laparoscopic surgery.
A team of researchers at EPFL (Lausanne, Switzerland) has devised a surgical system that lets surgeons control two robotic arms in addition to their own natural arms, using haptic foot interfaces featuring five degrees of freedom. Each hand handles a surgical instrument, while one foot controls an endoscope/camera and the other foot directs an actuated gripper. One of the groundbreaking elements of this system is the shared control between the surgeon and the robotic assistants. The control framework designed by the researchers enables collaborative work between the surgeon and the robots within a concurrent workspace, while satisfying the stringent precision and safety requirements of laparoscopic surgery.
The foot pedals incorporate actuators that provide haptic feedback to the user, steering the foot toward the target and limiting force and movement to prevent patient endangerment due to erroneous foot movements. This system broadens the scope for surgeons to execute four-handed laparoscopic operations, enabling a single surgeon to undertake a task typically requiring two to three individuals. This concept, known as shared control, sometimes allows the robotics to preemptively direct the surgeon's instrument control, anticipating the surgeon's intended movement. For instance, when tying a knot, the endoscope aligns itself in the correct position and the gripper may reposition to avoid obstruction.
The research team conducted a detailed user study involving practicing surgeons to assess the system's user-friendliness and efficacy. The study demonstrated that the system has the potential to lessen the workload of surgeons while enhancing precision and safety. The shared-control strategies integrated into the system were shown to reduce task load, enhance performance, boost fluency, and improve coordination during laparoscopic procedures. Even as the system undergoes further testing and refinements, these results confirm its capability to facilitate four-arm surgical tasks without the need for intensive training. The system has already been successfully employed to train specialists, and clinical trials are currently underway.
“Controlling four arms simultaneously, moreover with one’s feet, is far from routine and can be quite tiring,” said Professor Aude Billard, head of the Learning Algorithms and Systems Laboratory (LASA). “To reduce the complexity of the control, the robots actively assist the surgeon by coordinating their movements with the surgeon’s through active prediction of the surgeon’s intent and adaptive visual tracking of laparoscopic instruments with the camera. Additionally, assistance is offered for more accurate grasping of the tissues.”
Related Links:
EPFL
Latest Surgical Techniques News
- New Procedure Found Safe and Effective for Patients Undergoing Transcatheter Mitral Valve Replacement
- No-Touch Vein Harvesting Reduces Graft Failure Risk for Heart Bypass Patients
- DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment
- Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
- Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
- World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
- AI-Generated Synthetic Scarred Hearts Aid Atrial Fibrillation Treatment
- New Class of Bioadhesives to Connect Human Tissues to Long-Term Medical Implants
- New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
- Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
- Tiny Robotic Tools Powered by Magnetic Fields to Enable Minimally Invasive Brain Surgery
- Magnetic Tweezers Make Robotic Surgery Safer and More Precise
- AI-Powered Surgical Planning Tool Improves Pre-Op Planning
- Novel Sensing System Restores Missing Sense of Touch in Minimally Invasive Surgery
- Headset-Based AR Navigation System Improves EVD Placement
- Higher Electrode Density Improves Epilepsy Surgery by Pinpointing Where Seizures Begin
Channels
Critical Care
view channel
AI Interpretability Tool for Photographed ECG Images Offers Pixel-Level Precision
The electrocardiogram (ECG) is a crucial diagnostic tool in modern medicine, used to detect heart conditions such as arrhythmias and structural abnormalities. Every year, millions of ECGs are performed... Read more
AI-ECG Tools Can Identify Heart Muscle Weakness in Women Before Pregnancy
Each year, some mothers die from heart-related issues after childbirth, with many of these deaths being preventable. Screening for heart weakness before pregnancy could be crucial in identifying women... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more