Smart Contact Lenses Powered by Micrometres-Thin Tear-Based Battery Can Flag Diseases
By HospiMedica International staff writers Posted on 25 Aug 2023 |

Advanced contact lenses, known as smart contact lenses, have the remarkable capability to display visible information on our corneas and facilitate access to augmented reality. These lenses serve multiple purposes, including vision correction, health monitoring, and disease detection for individuals with chronic conditions like diabetes and glaucoma. In the future, they might even capture and transmit wearers' sensory experiences to cloud-based data storage. However, the realization of this potential depends on the development of a suitable and safe battery to power these lenses. Existing rechargeable batteries rely on metal-containing wires or induction coils, making them inappropriate for ocular use due to discomfort and associated risks.
Scientists from NTU Singapore (Singapore) have successfully created a flexible battery, as thin as a human cornea, which stores electricity when immersed in saline solution, thereby offering the potential to power smart contact lenses. The NTU-developed battery is built from biocompatible materials and is devoid of wires or toxic heavy metals found in lithium-ion batteries and wireless charging systems. It features a glucose-based coating that interacts with sodium and chloride ions in the surrounding saline solution. The water within the battery functions as the conduit for generating electricity. The battery can also harness power from human tears, which contain sodium and potassium ions in lower concentrations. Testing with a simulated tear solution indicated that the battery's lifespan could be extended by an hour for every twelve-hour wearing cycle. Moreover, it can be conventionally charged using an external power source.
The innovation was put to the test using a simulated human eye. Merely 0.5 millimeters thick, the battery draws power from basal tears, the continuous tears that form a thin film over our eyeballs. The battery's glucose oxidase coating reacts with the sodium and chloride ions in tears, generating current within the contact lenses for embedded devices to function. It was demonstrated that the battery produces a current of 45 microamperes and a maximum power of 201 microwatts, sufficient for powering smart contact lens. Lab tests revealed that the battery could be charged and discharged up to 200 times, while typical lithium-ion batteries endure around 300 to 500 charging cycles. The research team suggests that the battery should be immersed in a suitable solution rich in glucose, sodium, and potassium ions for at least eight hours during sleep to facilitate charging. The NTU team aims to further enhance the battery's electrical output and collaborate with contact lens manufacturers to implement this technology.
“Although wireless power transmission and supercapacitors supply high power, their integration presents a significant challenge due to the limited amount of space in the lens,” said co-first author Ms. Li Zongkang, a PhD student from NTU’s EEE. “By combining the battery and biofuel cell into a single component, the battery can charge itself without the need for additional space for wired or wireless components. Furthermore, the electrodes placed at the outer side of the contact lens ensures that the vision of the eye cannot be obstructed.”
Related Links:
NTU Singapore
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more