HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Collaborative Magnetic Microrobots Open New Horizons for Promising Biomedical Applications

By HospiMedica International staff writers
Posted on 25 Oct 2023
Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)
Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)

Surgeons often find it very difficult to reach a particular part of the body that requires surgery. But that is expected to change in the future when a couple of robots smaller than a grain of salt could go inside the body and work together to perform surgery involving all kinds of complex tasks.

For the first time ever, scientists at the Surgical Robotics Laboratory of the University of Twente (Enschede, Netherlands) have managed to make two microrobots work together to pick up, transport, and assemble inanimate objects in a three-dimensional setting. Remarkably, these magnetic microrobots, each just one millimeter in size, were able to handle tasks like lifting and arranging cubes, and they did so within a 3D environment.

Making the magnetic microrobots work together proved to be a huge challenge. One hurdle was that, like regular magnets, these tiny magnetic robots have the tendency to stick together when they come too close. However, the researchers used this natural attraction to their advantage. By developing a specialized controller, they were able to not only guide the movements of the individual robots but also control how they interact with one another. Because these microrobots are biocompatible and can be maneuvered in tough-to-reach or even confined spaces, they hold considerable potential for use in biomedical research and applications.

“It’s almost like magic,” said Franco Piñan Basualdo, a postdoctoral researcher at the Surgical Robotics Laboratory. “We can remotely manipulate biomedical samples without contaminating them. This could improve existing procedures and open the door to new ones.”

Related Links:
University of Twente 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
VTE Prevention System
Flowtron ACS900
New
Syringes
Prefilled Saline Flush Syringes

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more