Self-Propelling Nanorobots Reduce Bladder Tumors by 90%
By HospiMedica International staff writers Posted on 16 Jan 2024 |

Bladder cancer is one of the most common cancers worldwide, especially among men where it ranks fourth. It has a high recurrence rate, with about half of the cases recurring within five years, creating the need for continuous monitoring. This constant need for follow-up and repeated treatments makes bladder cancer treatment one of the costliest. While current treatments, which involve administering drugs directly into the bladder, offer favorable survival rates, their therapeutic effectiveness is still limited. An emerging and promising approach is the use of nanoparticles, particularly nanorobots, that can self-propel and deliver therapeutic agents directly to cancer cells.
A recent breakthrough by scientists at IRB Barcelona (Barcelona, Spain) has demonstrated the potential of urea-powered nanorobots in bladder cancer treatment. In their study, the team achieved a significant 90% reduction in bladder tumor size in mice using a single dose administered by these nanorobots. The nanorobots are essentially tiny machines, composed of porous silica spheres. Their surfaces are equipped with various components, each serving a specific purpose. One key component is the enzyme urease, which reacts with urea in urine, propelling the nanorobot forward. Another crucial element is radioactive iodine, widely used in localized tumor treatment.
Understanding how these nanorobots penetrate the tumor was challenging, as they do not possess specific antibodies for tumor recognition and because tumor tissue is generally stiffer than healthy tissue. However, the team discovered that the nanorobots could break down the tumor's extracellular matrix by locally increasing pH through their self-propelling action. This action enhances their penetration into and accumulation within the tumor. The researchers observed that while the nanorobots collide with the urothelium, acting as if they hit a wall, they effectively penetrate and accumulate inside the spongier tumor tissue.
The mobility of these nanobots significantly increases their chances of reaching and impacting the tumor. Additionally, the localized delivery of these nanorobots, carrying the radioisotope, reduces potential side effects. The high accumulation of these nanorobots in tumor tissue also intensifies the radiotherapeutic impact. This research offers promising directions for bladder cancer treatment, potentially reducing hospital stays, lowering costs, and improving patient comfort. The next research phase is already in progress, focusing on whether tumors recur post-treatment with these nanorobots.
"With a single dose, we observed a 90% decrease in tumor volume. This is significantly more efficient given that patients with this type of tumor typically have 6 to 14 hospital appointments with current treatments," said Samuel Sánchez, ICREA research professor at IBEC and leader of the study. “Such a treatment approach would enhance efficiency, reducing the length of hospitalization and treatment costs.”
Related Links:
IRB Barcelona
Latest Critical Care News
- Novel Coating Significantly Extends Longevity of Implantable Biosensors
- Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
- New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
- Battery-Powered Wearable Device Monitors Joint Pain
- Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws
- Breakthrough Sensor Technology Tracks Stroke After Effects
- New Study Demonstrates AI-Assisted Detection of Reduced Ejection Fraction
- Novel 3D Adipose Tissue Bioprinting Method to Find Applications in Regenerative Medicine
- Miniaturized Pacemaker for Newborns Found Safe and Effective for Up to Two Years
- World’s First 3D Neural Electrode Uses Soft Actuation Technology to Avoid Nerve Damage
- Smartwatch Algorithm Detects Cardiac Arrest
- Blood-Brain Barrier “Organ Chip” Treats Brain Tumors Unreachable by Chemotherapy
- AI Model Could Use ECG Tests to Detect Premature Aging and Cognitive Decline
- World-First Technology Uses Real-Time ECG Signal Analysis for Accurate CVAD Placement
- AI Outperforms Humans at Analyzing Long-Term ECG Recordings
- Smart Sensor Enables Precise, Self-Powered Tracking of Healing Wounds
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more