Wheeze-Counting Wearable Device Monitors Patient's Breathing In Real Time
By HospiMedica International staff writers Posted on 26 Apr 2024 |

Lung diseases like asthma, chronic obstructive pulmonary disease (COPD), lung cancer, bronchitis, and infections such as pneumonia, rank among the leading causes of death worldwide. Traditionally, medical professionals diagnose these conditions by listening to a patient's breathing using a stethoscope to detect abnormal sounds like wheezing or crackling, which are common indicators of many lung and respiratory diseases. This diagnostic method demands significant expertise, and misinterpreting these sounds can result in incorrect diagnoses. Researchers have now developed an artificial intelligence (AI) algorithm that continually monitors a patient’s breathing and issues early medical alerts for potential asthma attacks or other respiratory issues.
Developed by a team at the University of Texas at Dallas (Richardson, TX, USA), this algorithm monitors a patient’s breathing in real time and analyzes the frequency of wheezes. This enhances the monitoring of lung sounds for symptom prevention, early detection of respiratory diseases, and symptom alleviation. The research team trained their deep-learning model using a dataset comprising 535 respiration cycles from various patient data sources to identify breathing patterns indicative of asthmatic symptoms. This innovative wheeze counter is poised to transform the approach to predicting lung diseases based on long-term breathing patterns.
The challenge in a clinical setting is continuously monitoring the pattern and frequency of abnormal lung sounds over extended periods, which is currently impractical. The algorithm developed addresses this by not only identifying abnormal sounds in each breath but also by capturing a comprehensive set of data that includes atypical breathing patterns. The next step for the researchers is to integrate this technology into a wearable device, allowing for its use in both clinical and non-clinical settings to facilitate on-the-go detection and remote medical interventions. Going forward, the team aims to combine real-time air pollution readings with real-time breathing sound analysis into a single wearable device to offer continuous monitoring of respiratory health.
“We developed the deep-learning algorithm to detect automatically whether someone’s breathing is problematic. When someone is wheezing, the algorithm will count the number of incidences and analyze their timing,” said Dr. Dohyeong Kim, a University of Texas at Dallas researcher. “Our wheeze-counting method is straightforward yet effective, with potential for expansion into automatic symptom monitoring. This could be crucial in predicting the onset or severity of future abnormalities, as well as detecting current symptoms.”
Related Links:
University of Texas at Dallas
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more