AI Doubles Medical Professionals’ Accuracy in Reading EEG Charts of ICU Patients
By HospiMedica International staff writers Posted on 30 May 2024 |

Electroencephalography (EEG) readings are crucial for detecting when unconscious patients may be experiencing or are at risk of seizures. EEGs involve placing small sensors on the scalp to measure the brain’s electrical signals, which are visualized as lines that fluctuate on a chart. During a seizure, these lines exhibit dramatic spikes similar to a seismograph during an earthquake, making them easy to recognize. However, other significant but subtler abnormalities, known as seizure-like events are more challenging to identify. Now, an assistive machine learning model can significantly enhance how medical professionals interpret EEG charts of patients in intensive care settings.
Researchers at Duke University (Durham, N.C., USA) utilized “interpretable” machine learning algorithms to develop this computational tool. Unlike typical machine learning models, which are often "black boxes" that make it impossible to understand how the conclusions have been arrived at, interpretable models are designed to reveal the processes behind their conclusions. The team began by analyzing EEG samples from over 2,700 patients, with more than 120 experts identifying key features in the graphs, categorizing them as seizures, one of four types of seizure-like events, or 'other.' These events appear on EEG charts as distinct shapes or patterns, but the variability of these charts means signals can be obscured by noise or blend into confusing charts.
Due to the ambiguity in these charts, the model was trained to place its decisions within a continuum rather than well-defined separate bins. Visually, this continuum can be likened to a multicolored starfish evading a predator, with each color representing a different type of seizure-like event. Each differently colored arm represents a type of seizure-like event the EEG could represent. The closer the algorithm puts a specific chart toward the tip of an arm, the more confident it is of its decision, while those placed closer to the central body are less sure. Moreover, the algorithm highlights the specific brainwave patterns it analyzed to reach its conclusions and compares the chart in question to three professionally diagnosed examples.
This approach allows medical professionals to quickly focus on relevant sections of the EEG, assess whether the identified patterns are accurate, or determine if the model's analysis is incorrect. This tool can greatly assist even those with limited experience in reading EEGs to make more informed decisions. To validate the effectiveness of this technology, a team of eight medical professionals with relevant experience categorized 100 EEG samples into six categories, both with and without AI assistance. Their accuracy improved significantly with the AI, jumping from 47% to 71%, and outperforming those who used a more opaque "black box" algorithm in prior studies. The findings were published in the journal NEJM AI on May 23, 2024
“Usually, people think that black box machine learning models are more accurate, but for many important applications, like this one, it's just not true,” said Cynthia Rudin, the Earl D. McLean, Jr. Professor of Computer Science and Electrical and Computer Engineering at Duke. “It's much easier to troubleshoot models when they are interpretable. And in this case, the interpretable model was actually more accurate. It also provides a bird's eye view of the types of anomalous electrical signals that occur in the brain, which is really useful for care of critically ill patients.”
Related Links:
Duke University
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more