GPS-Like Smart Pills with AI Provide Real-Time 3D Monitoring Of Gastrointestinal Health
By HospiMedica International staff writers Posted on 13 Jun 2024 |
.jpg)
Gas produced in the intestines when bacteria digest food can provide valuable information about a person's health. Currently, to measure gastrointestinal (GI) tract gases, physicians use methods such as flatus collection and intestinal tube collection, or indirect methods like breath testing and stool analysis. Ingestible capsules, which are swallowed by the patient, offer a promising alternative, although no technologies have yet been perfected for precise gas sensing in this format. Now, recent advancements in wearable electronics and artificial intelligence (AI) have led to the creation of ingestible sensors that not only detect stomach gases but also track their location in real time.
Researchers at the University of Southern California (Los Angeles, CA, USA) have designed "smart" pills equipped with sensors that, once ingested, can detect gases linked to conditions like gastritis and gastric cancer. These smart pills can also be accurately tracked through a newly developed wearable system. This innovation marks a significant advancement in ingestible technology, potentially acting as a 'Fitbit for the gut' and aiding early disease detection. Although wearable sensors show great promise in monitoring bodily functions, tracking ingestible devices within the body has been challenging. However, with new advancements in materials and electronics miniaturization, as well as innovative protocols developed by the USC team, the researchers have successfully demonstrated the capability to specifically track device locations within the GI tract.
The first innovation involves a wearable coil embedded in a t-shirt that creates a magnetic field. This field, when combined with a neural network that has been trained, enables the precise location of the capsule within the body. According to the researchers, this capability using a wearable device has not been demonstrated before. The second innovation involves the development of a new sensing material. The capsules are not only equipped with electronics for tracking but also feature an "optical sensing membrane" that is sensitive to specific gases. This membrane consists of materials that alter their electron behavior in the presence of ammonia gas, which is indicative of H. pylori—a gut bacteria that, when elevated, can signal conditions such as peptic ulcers, gastric cancer, or irritable bowel syndrome. Therefore, the detection of this gas serves as a proxy for early disease detection.
The USC team has tested this ingestible device in various settings, including liquid environments and simulations of a bovine intestine. The combined system comprising the ingestible device and the wearable coil is compact and practical, clearing a pathway for application in human health. The device is currently undergoing the patent process, and the next phase involves testing with swine models. Beyond its use for early detection of peptic ulcers, gastritis, and gastric cancers, there is potential for monitoring brain health due to the brain-gut axis. Neurotransmitters located in the gut and their regulation are linked to neurodegenerative diseases. The ultimate aim of the USC team's research is to focus on brain health, and they are also exploring non-invasive methods to detect neurotransmitters associated with Parkinson’s and Alzheimer’s diseases.
Related Links:
Khan Lab at University of Southern California
Latest Critical Care News
- Novel Coating Significantly Extends Longevity of Implantable Biosensors
- Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
- New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
- Battery-Powered Wearable Device Monitors Joint Pain
- Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws
- Breakthrough Sensor Technology Tracks Stroke After Effects
- New Study Demonstrates AI-Assisted Detection of Reduced Ejection Fraction
- Novel 3D Adipose Tissue Bioprinting Method to Find Applications in Regenerative Medicine
- Miniaturized Pacemaker for Newborns Found Safe and Effective for Up to Two Years
- World’s First 3D Neural Electrode Uses Soft Actuation Technology to Avoid Nerve Damage
- Smartwatch Algorithm Detects Cardiac Arrest
- Blood-Brain Barrier “Organ Chip” Treats Brain Tumors Unreachable by Chemotherapy
- AI Model Could Use ECG Tests to Detect Premature Aging and Cognitive Decline
- World-First Technology Uses Real-Time ECG Signal Analysis for Accurate CVAD Placement
- AI Outperforms Humans at Analyzing Long-Term ECG Recordings
- Smart Sensor Enables Precise, Self-Powered Tracking of Healing Wounds
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more