AI-Generated Real-Time Alerts for Declining Health Speeds Up Treatment and Reduces Hospital Deaths
By HospiMedica International staff writers Posted on 17 Jun 2024 |

A fundamental objective of inpatient care is the timely intervention to prevent or manage clinical deterioration, which often leads to escalated care associated with poorer outcomes and increased use of resources. Historically, clinicians have utilized traditional manual methods like the Modified Early Warning Score (MEWS) to predict clinical deterioration. While these scores have shown good performance in retrospective assessments, their prospective validation has been more limited. Recent advancements have seen machine learning (ML) models, trained on extensive electronic health record (EHR) data, outperforming these older methods. These ML approaches generally have retrospective designs, although a few studies have explored the real-world application of ML models, noting improvements in mortality rates. However, solid data on these models are still lacking. Now, new research has found that hospitalized patients were 43% more likely to receive escalated care and significantly less likely to die if their healthcare team received AI-generated alerts about adverse changes in their health status.
The study conducted by researchers at the Icahn School of Medicine at Mount Sinai (New York, NY, USA;) aimed to assess whether rapid AI and machine learning-generated alerts, trained on diverse patient data, could reduce the need for intensive care and mortality rates. This prospective, non-randomized study involved 2,740 adult patients across four medical-surgical units at Mount Sinai Hospital, divided into two groups: one received real-time alerts on potential deterioration directly to their care teams, and the other had alerts generated but not delivered.
In the units where alerts were not delivered, patients meeting standard deterioration criteria received immediate intervention from a rapid response team. Further results from the intervention group showed that these patients were more likely to receive cardiovascular support medications, suggesting proactive measures by physicians; they also exhibited a reduced mortality rate within 30 days. The algorithm has since been implemented across all stepdown units at Mount Sinai Hospital, with a streamlined workflow. A team of intensive care physicians reviews the 15 highest-scoring patients daily, providing treatment recommendations to the attending doctors and nurses. As the algorithm is continuously retrained with data from an increasing number of patients, assessments by the intensive care team act as the benchmark for accuracy, further enhancing the algorithm's precision through reinforcement learning.
"Our research shows that real-time alerts using machine learning can substantially improve patient outcomes," said senior study author David L. Reich, MD, President of The Mount Sinai Hospital and Mount Sinai Queens, the Horace W. Goldsmith Professor of Anesthesiology, and Professor of Artificial Intelligence and Human Health at Icahn Mount Sinai. "These models are accurate and timely aids to clinical decision-making that help us bring the right team to the right patient at the right time. We think of these as ‘augmented intelligence’ tools that speed in-person clinical evaluations by our physicians and nurses and prompt the treatments that keep our patients safer. These are key steps toward the goal of becoming a learning health system."
Related Links:
Icahn School of Medicine at Mount Sinai
Latest Critical Care News
- Novel Coating Significantly Extends Longevity of Implantable Biosensors
- Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
- New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
- Battery-Powered Wearable Device Monitors Joint Pain
- Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws
- Breakthrough Sensor Technology Tracks Stroke After Effects
- New Study Demonstrates AI-Assisted Detection of Reduced Ejection Fraction
- Novel 3D Adipose Tissue Bioprinting Method to Find Applications in Regenerative Medicine
- Miniaturized Pacemaker for Newborns Found Safe and Effective for Up to Two Years
- World’s First 3D Neural Electrode Uses Soft Actuation Technology to Avoid Nerve Damage
- Smartwatch Algorithm Detects Cardiac Arrest
- Blood-Brain Barrier “Organ Chip” Treats Brain Tumors Unreachable by Chemotherapy
- AI Model Could Use ECG Tests to Detect Premature Aging and Cognitive Decline
- World-First Technology Uses Real-Time ECG Signal Analysis for Accurate CVAD Placement
- AI Outperforms Humans at Analyzing Long-Term ECG Recordings
- Smart Sensor Enables Precise, Self-Powered Tracking of Healing Wounds
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more