Electronic Grid Records Brain Activity during Surgery to Minimize Damage to Healthy Tissue
By HospiMedica International staff writers Posted on 18 Jun 2024 |

A new electronic grid equipped with nanoscale sensors that records electrical signals from the human brain with unprecedented detail could enhance surgical planning and execution for removing brain tumors and treating drug-resistant epilepsy. The grid's enhanced resolution could help neurosurgeons minimize damage to healthy brain tissue and more precisely identify the brain regions responsible for epileptic seizures, ensuring safer and more effective treatments.
The new brain sensor array, known as platinum nanorod grid (PtNRGrid), has been developed by engineers at the University of California San Diego (La Jolla, CA, USA;). The PtNRGrid features a densely packed array of 1,024 electrocorticography (ECoG) sensors, offering a significant advance over the commonly used ECoG grids that typically contain only 16 to 64 sensors and are much thicker and less flexible. This new device is just 6 microns thin—less than one-tenth the thickness of a human hair—and is both flexible and conformable, allowing it to adhere closely to the brain's surface and bend with its movement. This capability enables it to provide high-quality, high-resolution recordings of brain activity.
Since 2019, the research team has been at the forefront of mapping human brain and spinal cord activity using thousands of channels and has documented early safety and efficacy results in human subjects. The PtNRGrid is unique in its ability to map motor and language activities, as well as epileptic discharges, producing detailed videos of brain waves across more than 10 square centimeters of the brain's cortex while maintaining microscopic-level resolution. Currently holding the world record for the most detailed brain activity recording from a single cortical grid, the team has logged data using 2,048 channels and has since increased this capacity to 4,096 channels. The research team continues to enhance the resolution of brain activity monitoring by increasing the number of channels in the grid.
The U.S. Federal Drug Administration (FDA) has approved a clinical trial for PtNRGrid and granted it an investigational device exemption (IDE) for a pivotal study. Engineers will collaborate with clinician-scientists to validate the device's effectiveness in mapping both normal and pathological brain activities. In the trial's first phase, surgeons will implant the PtNRGrid in 20 patients to evaluate and compare its performance against current state-of-the-art technology. The device will be used in surgeries for removing brain tumors and epileptic tissue. Successful outcomes from this trial could lead to commercial scaling of the PtNRGrid. This advancement in ECoG technology not only promises to refine surgical interventions but also opens new avenues in neuroscience, potentially deepening our understanding of brain functionality. Insights gained could drive the development of more effective treatments, leveraging a better understanding of brain processes.
“This accomplishment ushers in a new era of clinical neuroscience and neuromonitoring,” said Shadi Dayeh, a Professor in the Department of Electrical and Computer Engineering at UC San Diego who invented the grid. “We are very excited to receive the FDA approval to apply our groundbreaking PtNRGrid in a clinical setting.”
Related Links:
UC San Diego
Latest Surgical Techniques News
- Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
- Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
- Spectroscopy Technique Improves Surgery for Pediatric Epilepsy Patients
- Bioengineered Arteries Show Promise for Cardiovascular Surgery
- Online Tool Guides Surgical Decisions for Gallbladder Cancer
- Innovative Technology Enables Rapid Life-Saving Surgical Leak Detection
- First-Of-Its-Kind Bioresorbable Implant to Help Children with Rare Respiratory Disease
- Screw-Shaped Magnetic Microrobots to Transform Treatment for Patients with Inoperable Blood Clots
- "Ultra-Rapid" Testing in the OR Could Enable Accurate Removal of Brain Tumors
- Automated Endoscopic Device Obtains Improved Biopsy Results in Single Pass
- World's First Machine Learning Model Combats Wrong-Site Surgery
- Novel Method Combining Heart Biopsy and Device Implantation Reduces Complications Risk
- New Surface Coating Could Prevent Blood Clotting in Medical Devices and Implants
- Dumbbell-Shaped Thrombectomy Device Offers Novel Approach to Cerebral Venous Sinus Thrombosis Treatment
- Novel Catheter Mimics Snake Teeth to Grab Blood Clots
- New Laparoscopic Imaging Technique Accurately Maps Biological Tissue for Minimally Invasive Surgery
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreCritical Care
view channel
Novel Coating Significantly Extends Longevity of Implantable Biosensors
Wearable and implantable biosensors capable of accurately detecting biological molecules in a non-invasive or minimally invasive way offer enormous potential for monitoring patients’ health and their responses... Read more
Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
Urinary tract infections (UTIs) are not only widespread and costly but also highly debilitating, significantly impacting the quality of life for those affected. The antibiotics commonly used to treat UTIs... Read more
New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
Preventable medication errors affect around 500,000 hospitalized patients in the U.S. every year. A significant portion of these errors occur with intravenous (IV) smart pumps, which require a precise... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more