New Insights into Blood Flow Fluctuations to Aid Fight Against Cardiovascular Disease
By HospiMedica International staff writers Posted on 23 Aug 2024 |

Atherosclerosis, characterized by the narrowing of arteries due to fat and cholesterol buildup, is a leading cause of death in Western societies, contributing to approximately 50% of all deaths. This condition can lead to severe health problems including strokes, heart attacks, and dementia. The narrowing of arteries disrupts normal blood flow, which triggers a series of cellular responses including the activation of the body’s innate immune cells, the white blood cells. One specific response to these blood flow changes, known as shear stress, is NETosis. During this process, neutrophils, a type of white blood cell, release web-like structures to capture and neutralize pathogens. However, this mechanism also contributes to arterial blockage, promoting dangerous inflammation and blood clotting. Researchers have now discovered how these blood flow fluctuations exacerbate inflammation and clot formation, highlighting the pivotal role of blood flow-driven forces in cardiovascular disease progression.
Based on these new insights, researchers at the Baker Heart and Diabetes Institute (Melbourne, VC, Australia) have identified an intervention target that could reduce these harmful effects. The study has discovered that the Piezo1 ion channel on cells is a key player in NETosis. It responds to the mechanical stress from altered blood flows by allowing calcium into the cells, which then initiates NETosis, leading to inflammation and clotting. Published in Nature Communications, these findings suggest that blocking Piezo1 could be an effective therapeutic strategy to counteract the negative impacts of shear stress. Such a strategy holds considerable promise for improving treatments for atherosclerosis and other related conditions, potentially delivering substantial public health benefits.
“Blood flow-driven forces, like shear stress, play a critical role in the development and progression of various cardiovascular diseases, including atherosclerosis and heart valve disease,’ said Sara Baratchi, Associate Professor at Baker Institute Head of the Mechanobiology and Microfluidics lab. “Understanding the effect of shear stress in areas where blood vessels or heart valves are narrowed because of the immune cells is crucial in the context of cardiovascular disease, as it offers significant insights into the mechanisms that drive disease progression and complications. With these findings, we’re now a step closer to identifying protective treatments that can prevent this harmful clotting that is induced by the NETosis process.”
Related Links:
Baker Heart and Diabetes Institute
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more