Human-Centered AI Tool Predicts Patient’s Sepsis Risk Within Four Hours
By HospiMedica International staff writers Posted on 28 Aug 2024 |

Sepsis, a critical and life-threatening response to infection, can quickly lead to organ failure and is highly difficult to diagnose due to its common symptoms such as fever, low blood pressure, and increased heart rate, which mimic many other conditions. Now, an innovative artificial intelligence (AI) tool designed to assist clinicians in making decisions about patients at risk of sepsis introduces a novel feature: it accounts for uncertainties in its predictions and suggests additional information, such as demographic data, vital signs, and lab test results, needed to enhance its accuracy.
The system, called SepsisLab, was developed by scientists at The Ohio State University (Columbus, OH, USA) based on feedback from doctors and nurses in emergency and intensive care settings, where sepsis frequently occurs. These healthcare professionals expressed concerns over existing AI tools that rely solely on electronic health records without incorporating clinical inputs. SepsisLab improves upon this by predicting sepsis risk within a four-hour window while actively identifying and quantifying the importance of missing patient data, visually informing clinicians how certain pieces of information can influence the risk assessment.
This AI system updates its predictions hourly as new patient data is incorporated, continuously refining its accuracy. It also provides clinicians with actionable insights, suggesting which laboratory tests might be most informative and estimating how different clinical interventions could alter the patient's risk of developing sepsis According to the research published Aug. 24 in KDD ’24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, incorporating just 8% additional data from lab results and other key variables can decrease uncertainty in the predictions by 70%, enhancing the tool’s accuracy in assessing sepsis risk by 11%.
“The existing model represents a more a traditional human-AI competition paradigm, generating numerous annoying false alarms in ICUs and emergency rooms without listening to clinicians,” said senior study author Ping Zhang, associate professor of computer science and engineering and biomedical informatics at Ohio State. “The idea is we need to involve AI in every intermediate step of decision-making by adopting the ‘AI-in-the-human-loop’ concept. We’re not just developing a tool – we also recruited physicians into the project. This is a real collaboration between computer scientists and clinicians to develop a human-centered system that puts the physician in the driver’s seat.”
Related Links:
The Ohio State University
Channels
Surgical Techniques
view channel
New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more
Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
The tricuspid valve is one of the four heart valves, responsible for regulating blood flow from the right atrium (the heart's upper-right chamber) to the right ventricle (the lower-right chamber).... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more