Wearable Lung Patch Accurately Detects Asthma and COPD
By HospiMedica International staff writers Posted on 12 Sep 2024 |

Globally, asthma and chronic obstructive pulmonary disease (COPD) are significantly underdiagnosed, with rates ranging from 20-70% for asthma and up to 81% for COPD. Early detection and management are crucial for these chronic respiratory diseases. A common indicator of these conditions is wheezing, a high-pitched whistling sound caused by inflammation and narrowing of the airways. Physicians typically use digital stethoscopes, considered the gold standard, to listen to and record abnormal lung sounds like wheezing and crackles—clicking or rattling sounds that often accompany wheezing. They analyze these recordings to determine whether they capture wheezing, crackling, or normal breath sounds. Currently, the standard method for identifying wheezing involves a computerized time-frequency analysis, which relies on a checklist algorithm. However, this method is not comprehensive, resulting in some cases being missed. There is a need for an advanced technological solution that can serve as a screening tool in clinical settings and for remote patient monitoring, allowing physicians to intervene early.
Researchers at the Georgia Institute of Technology (Atlanta, GA, USA) have developed a deep learning (DL) model paired with a wearable patch equipped with a highly sensitive sensor capable of automatically detecting wheezing sounds. This DL model has the potential to classify respiratory diseases, potentially speeding up diagnosis and treatment. Unlike traditional microphones in digital stethoscopes, the microchip sensor in the wearable patch can detect tiny vibrations with high sensitivity and minimal distortion. For the development of the DL model, lung sound recordings were collected from 52 patients in an outpatient asthma clinic or hospital setting. Twenty-five of these patients were obese, a condition that can reduce the quality of traditional lung recordings.
To obtain the recordings, patients wore the miniature patch on up to nine different sites on their chest. Data was recorded from each location while the patient took deep breaths for 30 seconds. For comparison, physicians also took lung recordings using digital stethoscopes at the same chest sites. The recordings from both sources were reviewed in a blinded experiment, with physicians labeling whether they heard wheezing and providing a diagnosis after the clinical evaluation. The labeled wheezes from the digital stethoscope and the wearable patch were highly consistent, even for obese patients. These clinician-labeled data were then incorporated into the DL model, enabling it to distinguish between wheezing sounds and normal breath sounds.
The researchers compared the performance of the DL model to the standard time-frequency method for detecting wheezing, both when paired with the patch and the digital stethoscope. The results of the pilot study, published in BioSensors, showed that the DL model paired with the patch consistently outperformed the other methods, achieving the highest average accuracy, sensitivity, and specificity rates for wheeze detection at 95%, 96%, and 93%, respectively. This combination surpassed the time-frequency method paired with either the patch or the digital stethoscope, as well as the DL model paired with the digital stethoscope. The researchers envision two potential applications for the wearable patch framework: short-term screening in clinical settings and long-term home monitoring. They are currently developing a wireless version of the patch for remote monitoring, which could transmit data to a patient's physician to facilitate timely treatment.
“Our sensitive patch has many advantages over traditional wheeze detection, which struggles to detect all variations of wheezes and crackles, which can lead to misdiagnosis,” said Farrokh Ayazi, Ph.D., senior study author and a professor in electrical and computer engineering at Georgia Institute of Technology. “By incorporating data from these wheeze variations into a deep learning model, and by taking advantage of the sensor’s ability to eliminate ambient sounds, our detection method led to higher accuracy, sensitivity [it correctly identified the presence of a wheeze], and specificity [it correctly identified absence of a wheeze] compared to the standard time-frequency approach.”
Related Links:
Georgia Institute of Technology
Latest Critical Care News
- Novel Coating Significantly Extends Longevity of Implantable Biosensors
- Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
- New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
- Battery-Powered Wearable Device Monitors Joint Pain
- Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws
- Breakthrough Sensor Technology Tracks Stroke After Effects
- New Study Demonstrates AI-Assisted Detection of Reduced Ejection Fraction
- Novel 3D Adipose Tissue Bioprinting Method to Find Applications in Regenerative Medicine
- Miniaturized Pacemaker for Newborns Found Safe and Effective for Up to Two Years
- World’s First 3D Neural Electrode Uses Soft Actuation Technology to Avoid Nerve Damage
- Smartwatch Algorithm Detects Cardiac Arrest
- Blood-Brain Barrier “Organ Chip” Treats Brain Tumors Unreachable by Chemotherapy
- AI Model Could Use ECG Tests to Detect Premature Aging and Cognitive Decline
- World-First Technology Uses Real-Time ECG Signal Analysis for Accurate CVAD Placement
- AI Outperforms Humans at Analyzing Long-Term ECG Recordings
- Smart Sensor Enables Precise, Self-Powered Tracking of Healing Wounds
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more