Laser-Based Headset Measures Blood Flow to Noninvasively Assess Stroke Risk
By HospiMedica International staff writers Posted on 01 Oct 2024 |

Strokes are the leading cause of neurological disability, with nearly 90% resulting from reduced or blocked blood flow to part of the brain, causing brain cell death. Despite this, there is no widely accessible method to screen patients for physical signs that a stroke may be imminent. While physicians can order cardiac stress tests to assess cardiovascular disease risk, there is no comparable, scalable, and cost-effective test to evaluate stroke risk. Currently, the best tool for estimating stroke risk is a questionnaire that considers various contributing factors. Now, researchers have developed a potential new method to measure stroke risk that is both noninvasive and cost-effective, similar to a cardiac stress test. If further validated, this device could revolutionize stroke care, making early detection of increased risk a routine part of medical exams worldwide.
A team of engineers and scientists from Caltech (Pasadena, CA, USA) and the Keck School of Medicine of USC (Los Angeles, CA, USA) has created a headset-based device that noninvasively monitors changes in blood flow and volume while the patient holds their breath, providing a new way to assess stroke risk. The device uses a laser-based system and has shown potential for distinguishing between individuals at low and high risk of stroke. It works by shining infrared laser light through the skull into the brain, and a nearby special camera collects the light that scatters back after interacting with blood in the vessels.
This technique, known as speckle contrast optical spectroscopy (SCOS), measures the reduction in light intensity from the point where it enters the skull to where it is collected, determining blood volume in the brain’s vessels. The light scattering also creates speckles in the camera's field of view, which fluctuate based on the rate of blood flow. The faster the blood flow, the quicker the speckle field changes. By calculating the ratio of blood flow to volume, researchers can estimate a patient’s stroke risk. In a proof-of-concept study, 50 participants wore the device while undergoing a breath-holding "stress test" for the brain. The SCOS device successfully differentiated between individuals with high and low stroke risk based on changes in blood flow and volume during the test. In the low-risk group, there was a smaller increase in blood flow but a greater increase in blood volume during breath-holding, indicating that blood could flow more easily through the widened vessels. The results were published in Biomedical Optics Express.
This device offers a simpler and more affordable way to assess stroke risk than current methods, which rely on costly imaging tests like MRI or CT scans. The SCOS technology is portable, making it suitable for use in primary care offices, emergency departments, community clinics, and even in developing countries. The research team plans to refine the device, integrate machine learning into data collection, and conduct a clinical trial with patient tracking over more than two years. They hope the device will eventually be used not only for stroke risk screening but also to pinpoint the location of a stroke that has already occurred.
"With this device, for the first time, we are going to have a way of knowing if the risk of someone having a stroke in the future is significant or not based on a physiological measurement," said Simon Mahler, a postdoctoral scholar in the lab of Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech and a Heritage Medical Research Institute Investigator. "We think this can really revolutionize the way stroke risk is assessed and will eventually help doctors determine if a patient’s risk is stable or worsening."
Latest Critical Care News
- Novel Coating Significantly Extends Longevity of Implantable Biosensors
- Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
- New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
- Battery-Powered Wearable Device Monitors Joint Pain
- Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws
- Breakthrough Sensor Technology Tracks Stroke After Effects
- New Study Demonstrates AI-Assisted Detection of Reduced Ejection Fraction
- Novel 3D Adipose Tissue Bioprinting Method to Find Applications in Regenerative Medicine
- Miniaturized Pacemaker for Newborns Found Safe and Effective for Up to Two Years
- World’s First 3D Neural Electrode Uses Soft Actuation Technology to Avoid Nerve Damage
- Smartwatch Algorithm Detects Cardiac Arrest
- Blood-Brain Barrier “Organ Chip” Treats Brain Tumors Unreachable by Chemotherapy
- AI Model Could Use ECG Tests to Detect Premature Aging and Cognitive Decline
- World-First Technology Uses Real-Time ECG Signal Analysis for Accurate CVAD Placement
- AI Outperforms Humans at Analyzing Long-Term ECG Recordings
- Smart Sensor Enables Precise, Self-Powered Tracking of Healing Wounds
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more