Grain-Sized Soft Robots Controlled by Magnetic Fields Deliver Medical Drugs
By HospiMedica International staff writers Posted on 28 Oct 2024 |

Miniature robots hold significant potential to revolutionize targeted drug delivery by delivering high concentrations of medication directly to disease sites while minimizing complications. However, current miniature robots are limited in their capabilities; most can only transport a single type of drug, while those designed to carry multiple drugs lack the ability to alter their dispensing sequence or dosage. Additionally, the latter robots cannot transport more than three types of drugs, selectively dispense them, maintain mobility, or release drugs at multiple sites. A team of researchers has now created grain-sized soft robots that can be controlled via magnetic fields for targeted drug delivery, potentially enhancing therapeutic options in the future. This study, published in the journal Advanced Materials, represents the first instance of miniature robots capable of transporting up to four different drugs and releasing them in reprogrammable sequences and dosages.
In contrast to previous small-scale robots that could only carry up to three types of drugs and lacked programmable release capabilities, the new miniature robots developed by scientists at NTU’s Nanyang Technological University (Singapore) provide precision functions that could significantly enhance therapeutic outcomes while reducing side effects. The NTU team had earlier developed magnetically controlled miniature robots capable of intricate maneuvers, such as ‘swimming’ through tight spaces and grasping tiny objects. Building upon this earlier research, the team drew inspiration from the 1960s film ‘Fantastic Voyage,’ in which a crew is miniaturized to repair damage within a scientist's brain.
The grain-sized robots were constructed using smart magnetic composite materials (magnetic microparticles and polymers) that are safe for human use. Unlike existing miniature robots that cannot precisely control their orientation, the newly developed soft robots demonstrate high dexterity, allowing them to roll and crawl quickly to navigate obstacles. This dexterity is advantageous for traversing complex, unstructured environments within the human body. In laboratory experiments, the robots performed tasks in water simulating conditions within the human body. Initially placed on a surface divided into four sections, the robots successfully moved to each section at speeds ranging from 0.30 mm to 16.5 mm per second, releasing different drugs in each area, which confirmed their ability to carry multiple drugs and program their release in a controlled manner.
In another experiment, researchers assessed the robots’ drug delivery capabilities in more challenging environments using a thicker liquid. The results indicated that the robots could navigate through this environment and effectively release sufficient quantities of drugs over eight hours. Furthermore, after eight hours of continuous operation, the robots displayed minimal drug leakage. This capacity for controlled drug release without excessive leakage positions the soft robots as promising candidates for therapies that require precise delivery of multiple drugs at varying times and locations. The NTU research team aims to reduce the size of these robots even further so they can potentially be employed in groundbreaking treatments for conditions such as brain tumors, bladder cancer, and colorectal cancer. Before these tiny robots are utilized for such medical applications, the researchers plan to further assess their performance using organ-on-chip devices and animal models.
“What was a scenario in a sci-fi movie is now becoming closer to reality with our lab’s innovation,” said lead investigator, Assistant Professor Lum Guo Zhan from the School of Mechanical and Aerospace Engineering (MAE). “Traditional methods of drug delivery like oral administration and injections will seem comparatively inefficient when stacked up against sending a tiny robot through the body to deliver the drug exactly where it is needed.”
Latest Critical Care News
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
- Starfish-Inspired Wearable Tech Enables Smarter Heart Monitoring
- AI Eye Scans Could Help Identify Heart Disease and Stroke Risk
- Digital Heart Twin Improves Diagnosis and Treatment of Cardiac Arrhythmias
- First-Of-Its-Kind AI-Powered Probability Scoring System Assesses Heart Failure with Preserved Ejection Fraction
- AI-Assisted Colonoscopy Detects More Polyps but Has Modest Effect on Cancer Risk
- Wearables Could Reduce Need for Continuous Blood Thinners in Patients with Atrial Fibrillation
- AI Model Provides Real-Time Sepsis Risk Alerts for Improving ICU Patient Survival
- AI Algorithm Improves Intravenous Nutrition for Premature Babies
- Smart Mirror Generates AI-Powered Health Insights by Analyzing Facial Blood Flow
- Painless Diabetes Patch to Replace Needle Pricks
- Sensory T-Shirt Monitors Patient’s Vitals After Urological Surgery for Cancer
- Super-Sensitive Radar Technology Warns of Serious Heart Issues
- Thermal Imaging Could Accurately Track Vital Signs for Early Disease Detection
Channels
Surgical Techniques
view channel
New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more
Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
The tricuspid valve is one of the four heart valves, responsible for regulating blood flow from the right atrium (the heart's upper-right chamber) to the right ventricle (the lower-right chamber).... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more