AI Model Predicts Patients’ Risk of Developing and Worsening Disease from ECGs
By HospiMedica International staff writers Posted on 28 Oct 2024 |
_2.jpeg)
An electrocardiogram (ECG) is a test that records the electrical activity of the heart and is among the most frequently performed medical assessments globally. ECGs illustrate the flow of electrical signals within and between the heart's various chambers, including the atria and ventricles. Additionally, ECGs gather extensive information from the body, as conditions like diabetes, which affect organs such as the kidneys or liver, can also impact heart function. Cardiologists rely on their expertise and established guidelines to interpret ECGs, categorizing them into ‘normal’ and ‘abnormal’ patterns to aid in diagnosing various diseases. While artificial intelligence (AI)-enhanced ECGs are recognized for their accuracy in diagnosing heart conditions, they have not previously been employed to inform clinicians about an individual patient's risk of developing a range of specific, treatable diseases in the future. A new AI model now enables the prediction of patients’ risks for developing and worsening diseases, as well as their risk of early mortality, utilizing an ECG. This model empowers doctors to detect diseases earlier and prioritize urgent cases for intervention.
Researchers at Imperial College London (London, UK) utilized extensive datasets from international sources, encompassing millions of ECGs collected as part of routine care, to train their AI model to analyze ECGs and accurately predict which patients would go on to develop new diseases, experience disease progression, or ultimately die. The AI model was trained to interpret the flow of electrical signals within and between the atria and ventricles, identifying patterns in the electrical signals. According to the researchers, the model can discern ECG patterns with greater complexity and nuance than a cardiologist. Their findings, published in Lancet Digital Health, indicate that the AI model—referred to as AI-ECG risk estimation, or AIRE—successfully identified the risk of death within ten years following the ECG with an accuracy of 78%. In the cases where the model was incorrect, researchers suggest that unknown factors, such as subsequent treatment or unforeseen causes of death, may have played a role.
The system is capable of predicting future health risks, including heart rhythm issues, heart attacks, and heart failure, as well as the likelihood of dying from non-heart-related causes. The researchers reported a high level of accuracy in these predictions. They also analyzed imaging and genetic data, which supported their findings by confirming that the AI predictions were associated with actual biological factors in the heart's structure and function. This aspect is critical for establishing the model’s credibility with clinicians, as it demonstrates the model’s ability to detect subtle changes in the heart’s structure over time, which are early indicators of disease or mortality risk.
“Our work has shown that this AI model is a credible and reliable tool that could, in future, be programmed for use in different areas of the NHS to provide doctors with relevant risk information,” said Dr. Fu Siong Ng, senior author of the study and Reader in Cardiac Electrophysiology at the National Heart & Lung Institute atImperial College London. “This could have a positive impact on how patients are treated, and ultimately improve patient longevity and quality of life. It could also reduce waiting lists and allow more efficient allocation of resources. We believe this could have major benefits for the NHS, and globally.”
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more