Wearable Sensor Patch Paired to Smartphone Detects Arrhythmia
By HospiMedica International staff writers Posted on 05 Nov 2024 |

Wearable sensors are devices designed to be worn on the body that measure various physiological states. As part of the Internet of Things (IoT), these sensors hold significant potential for health monitoring. They produce substantial amounts of data, which must be processed for meaningful interpretation. The area of computing focused on processing this data locally on the sensor or a connected device, instead of relying on a remote cloud server, is known as edge computing. This approach is essential for the advancement of wearable sensor technology. Researchers have now employed edge computing on smartphones to analyze data from a multimodal flexible wearable sensor patch to detect arrhythmia, coughs, and falls.
A research team from Hokkaido University (Hokkaido, Japan) has created a flexible multimodal wearable sensor patch and developed edge computing software capable of identifying arrhythmia, coughs, and falls in volunteers. This innovative sensor, which utilizes a smartphone as the edge computing device, is detailed in a paper published in the journal Device. The patch is equipped with sensors that monitor cardiac activity through electrocardiogram (ECG), as well as respiration, skin temperature, and humidity due to perspiration. After confirming their long-term usability, the sensors were integrated into a flexible film that adheres to the skin. Additionally, the sensor patch contains a Bluetooth module for connection to a smartphone.
The team initially evaluated the sensor patch's ability to detect physiological changes in three volunteers who wore it on their chests. The patch was used to monitor vital signs in these individuals at wet-bulb globe temperatures (which assess heat stress risk) of 22°C and above 29°C. While the sample size was limited, the researchers were able to observe significant changes in vital signs during time-series monitoring at elevated temperatures. This could potentially aid in identifying symptoms of early-stage heat stress. To further enhance their findings, the team developed a machine learning program to analyze the recorded data for additional symptoms, including heart arrhythmia, coughing, and falls. Besides conducting the analysis on a computer, they also created an edge computing application for smartphones that achieved similar analytical results, with a prediction accuracy exceeding 80%.
“Our goal in this study was to design a multimodal sensor patch that could process and interpret data using edge computing, and detect early stages of disease during daily life,” said Professor Kuniharu Takei from Hokkaido University. “The significant advance of this study is the integration of multimodal flexible sensors, real-time machine learning data analyses, and remote vital monitoring using a smartphone. One drawback of our system is that training could not be carried out on the smartphone, and had to be done on the computer; however, this can be solved by simplifying the data processing.”
Latest Critical Care News
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
- Starfish-Inspired Wearable Tech Enables Smarter Heart Monitoring
- AI Eye Scans Could Help Identify Heart Disease and Stroke Risk
- Digital Heart Twin Improves Diagnosis and Treatment of Cardiac Arrhythmias
- First-Of-Its-Kind AI-Powered Probability Scoring System Assesses Heart Failure with Preserved Ejection Fraction
- AI-Assisted Colonoscopy Detects More Polyps but Has Modest Effect on Cancer Risk
- Wearables Could Reduce Need for Continuous Blood Thinners in Patients with Atrial Fibrillation
- AI Model Provides Real-Time Sepsis Risk Alerts for Improving ICU Patient Survival
- AI Algorithm Improves Intravenous Nutrition for Premature Babies
- Smart Mirror Generates AI-Powered Health Insights by Analyzing Facial Blood Flow
- Painless Diabetes Patch to Replace Needle Pricks
- Sensory T-Shirt Monitors Patient’s Vitals After Urological Surgery for Cancer
- Super-Sensitive Radar Technology Warns of Serious Heart Issues
- Thermal Imaging Could Accurately Track Vital Signs for Early Disease Detection
Channels
Surgical Techniques
view channel
New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more
Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
The tricuspid valve is one of the four heart valves, responsible for regulating blood flow from the right atrium (the heart's upper-right chamber) to the right ventricle (the lower-right chamber).... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more