New Generation of Wearable Sensors to Perform Biochemical Analysis of Body Fluids
By HospiMedica International staff writers Posted on 05 Dec 2024 |

Wearable devices are already capable of monitoring vital body functions, such as pulse with a smartwatch or blood pressure with a smartphone app. While these sensors can provide reliable real-time data and even be used in clinical diagnostics, biochemical analyses still require bodily fluid samples like blood and urine, which are sent to labs for testing. This process can be invasive, time-consuming, and expensive. However, the next generation of wearable sensors promises to extend beyond basic vital sign tracking to include biochemical analysis. In the future, these sensors could offer valuable health insights by analyzing body fluids such as sweat, breath, saliva, tears, and urine. While many of these advancements are not yet market-ready, they are entirely feasible.
Researchers at Collegium Helveticum (Zurich, Switzerland) and ETH Zurich (Zurich, Switzerland) joined their leading counterparts in the field of wearable sensors to conduct a comprehensive review that was recently published in the journal Nature. These sensors offer significant advantages: they enable continuous health monitoring without requiring visits to medical facilities. For elderly individuals suffering from heat stress, a wearable device could remind them to stay hydrated or alert them when their electrolyte levels become critical. Additionally, such sensors are either non-invasive or minimally invasive, providing a less distressing alternative for young patients. For example, taking blood samples or inserting a catheter into infants can be difficult, leading to delays and discomfort. A wearable sensor on the infant's skin or in their diaper could perform necessary tests, such as urine analysis, with greater ease. Similarly, face masks capable of detecting viruses, like SARS-CoV-2, without invasive nasal swabs would have been especially valuable during the pandemic.
The potential applications for these devices are diverse, including innovations such as dummy sensors to detect infant dehydration, tattoos that monitor blood sugar levels, and contact lenses that gather data from the wearer’s tears. However, the challenge is clear: the devices must be practical and comfortable enough for patients to wear regularly. Additionally, the clinical benefits of the data these devices collect must be carefully considered. Not all measurable data translates into useful clinical information. For instance, C-reactive protein (CRP) is a marker of inflammation, but a high CRP reading only provides useful insight if compared to previous values, helping to assess if a patient’s condition has improved or worsened.
The development of wearable sensors also faces several technical challenges, such as how long the devices can function continuously, how they should be cleaned and stored, their energy consumption, and most importantly, the reliability of the data they collect. Validating this data is crucial, as only trustworthy readings will lead to widespread acceptance in clinical settings. Furthermore, the data from these wearables must be processed, interpreted, and presented in a user-friendly way for both patients and healthcare providers. As artificial intelligence (AI) continues to advance, it will play an increasing role in data analysis, accelerating the development of these devices. Although significant progress has been made, the researchers acknowledge that much work remains in terms of research, development, and clinical applications. Once these new devices are thoroughly tested and validated, they could gain regulatory approval, offering substantial benefits to patients and healthcare providers alike.
Latest Critical Care News
- Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
- Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
- Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
- Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
- Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
- Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
- Groundbreaking Technology Rapidly Detects Airborne Influenza Viruses
- Handheld Device Could Transform Heart Disease Screening
- Flexible Semi-Autonomous Robot Could Deliver Medicine Inside Body
- Neurorestorative Treatment Strategies Hold Promise for Most Severe Forms of Epilepsy
- Gene Discovery Could Help Grow New Heart Arteries
- Study Discovers Invisible Transmission of Common Hospital-Associated Infection
- Non-Invasive Neuro-Ophthalmology Techniques Could Detect Brain Tumors Earlier
- Mass Manufactured Nanoparticles to Deliver Cancer Drugs Directly to Tumors
- World’s Smallest Pacemaker Fits Inside Syringe Tip
- AI-Powered, Internet-Connected Medical Devices to Revolutionize Healthcare, Finds Study
Channels
Surgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more