Vision-Correcting Display Could Make Glasses Redundant
By HospiMedica International staff writers Posted on 17 Aug 2014 |

Image: The deconvolution computational light field display (Photo courtesy of Fu-Chung Huang / Berkeley).
An innovative computational light field display configuration could one day obviate the need for glasses when using digital displays.
Researchers at the University of California Berkeley (USA) are developing computer algorithms to compensate for an individual's visual impairment, creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses. The algorithm works by adjusting the intensity of each direction of light that emanates from a single pixel in an image, based upon a user's specific visual impairment. To do so, a printed pinhole screen is sandwiched between two layers of clear plastic to enhance image sharpness. The tiny pinholes are 75 micrometers each and spaced 390 micrometers apart.
In a process called deconvolution, light passes through the pinhole array in such a way that the user will perceive a sharper image. The technique essentially distorts the image so that when an intended user looks at the screen, the image will appear sharp to that particular viewer; but if someone else were to look at the image, it would look fuzzy. The technology, developed in conjunction with the Massachusetts Institute of Technology (MIT, Cambridge, USA), could potentially help hundreds of millions of people who need corrective lenses to use their smartphones, tablets, and computers.
More importantly, the displays could one day aid people with more complex visual problems that cannot be corrected by eyeglasses, known as high-order aberrations, improve visual acuity. The study describing the technology was presented at the International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH), held during August 2014 in Vancouver (Canada).
“The significance of this project is that instead of relying on optics to correct your vision, we use computation. This is a very different class of correction, and it is nonintrusive,” said lead author Fu-Chung Huang, PhD. “In the future, we also hope to extend this application to multi-way correction on a shared display, so users with different visual problems can view the same screen and see a sharp image.”
“People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit,” added senior author Prof. Brian Barsky, PhD. “In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”
Related Links:
University of California Berkeley
Massachusetts Institute of Technology
Researchers at the University of California Berkeley (USA) are developing computer algorithms to compensate for an individual's visual impairment, creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses. The algorithm works by adjusting the intensity of each direction of light that emanates from a single pixel in an image, based upon a user's specific visual impairment. To do so, a printed pinhole screen is sandwiched between two layers of clear plastic to enhance image sharpness. The tiny pinholes are 75 micrometers each and spaced 390 micrometers apart.
In a process called deconvolution, light passes through the pinhole array in such a way that the user will perceive a sharper image. The technique essentially distorts the image so that when an intended user looks at the screen, the image will appear sharp to that particular viewer; but if someone else were to look at the image, it would look fuzzy. The technology, developed in conjunction with the Massachusetts Institute of Technology (MIT, Cambridge, USA), could potentially help hundreds of millions of people who need corrective lenses to use their smartphones, tablets, and computers.
More importantly, the displays could one day aid people with more complex visual problems that cannot be corrected by eyeglasses, known as high-order aberrations, improve visual acuity. The study describing the technology was presented at the International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH), held during August 2014 in Vancouver (Canada).
“The significance of this project is that instead of relying on optics to correct your vision, we use computation. This is a very different class of correction, and it is nonintrusive,” said lead author Fu-Chung Huang, PhD. “In the future, we also hope to extend this application to multi-way correction on a shared display, so users with different visual problems can view the same screen and see a sharp image.”
“People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit,” added senior author Prof. Brian Barsky, PhD. “In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”
Related Links:
University of California Berkeley
Massachusetts Institute of Technology
Latest Health IT News
- Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
- Smartwatches Could Detect Congestive Heart Failure
- Versatile Smart Patch Combines Health Monitoring and Drug Delivery
- Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients
- Strategic Collaboration to Develop and Integrate Generative AI into Healthcare
- AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity
- AI Predicts Pancreatic Cancer Three Years before Diagnosis from Patients’ Medical Records
- First Fully Autonomous Generative AI Personalized Medical Authorizations System Reduces Care Delay
- Electronic Health Records May Be Key to Improving Patient Care, Study Finds
- AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease
- First-Ever AI Test for Early Diagnosis of Alzheimer’s to Be Expanded to Diagnosis of Parkinson’s Disease
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreCritical Care
view channel
Novel Coating Significantly Extends Longevity of Implantable Biosensors
Wearable and implantable biosensors capable of accurately detecting biological molecules in a non-invasive or minimally invasive way offer enormous potential for monitoring patients’ health and their responses... Read more
Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
Urinary tract infections (UTIs) are not only widespread and costly but also highly debilitating, significantly impacting the quality of life for those affected. The antibiotics commonly used to treat UTIs... Read more
New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
Preventable medication errors affect around 500,000 hospitalized patients in the U.S. every year. A significant portion of these errors occur with intravenous (IV) smart pumps, which require a precise... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more