Synthesized X-Ray Images Help Train AI Programs
By HospiMedica International staff writers Posted on 17 Jul 2018 |

Image: Real X-ray image (L) next to a synthesized X-ray created by DCGAN. Underneath the X-ray images are the corresponding heatmaps (Photo courtesy of Hojjat Salehinejad/MIMLab).
A new study describes how computer generated X-rays can be used to augment artificial intelligence (AI) training sets.
In order to generate and continually improve artificial X-rays, researchers at the University of Toronto (Canada) used deep convolutional generative adversarial network (DCGAN) algorithms, which are made up of two networks: one that generates the images, and the other that tries to discriminate synthetic images from real images. The two networks are continuously trained until they reach a point in which the discriminator cannot differentiate real images from synthesized ones. Once a sufficient number of artificial X-rays are created, they are used to train another DCGAN that can classify the images accordingly.
The researchers then compared the accuracy of the artificially augmented dataset to the original one when fed through their AI system, and found that classification accuracy improved by 20% for common conditions. For some rare conditions, accuracy improved up to 40%. An advantage of the method is that as the synthetic X-rays are not real, the dataset can be readily available to researchers outside hospital premises without violating privacy concerns. The study was presented at the IEEE International Conference on Acoustics, Speech and Signal Processing, held during April 2018 in Calgary (Canada).
“In a sense, we are using machine learning to do machine learning,” said senior author and study presenter Professor Shahrokh Valaee, PhD, of the Machine Intelligence in Medicine Lab (MIMLab). “We are creating simulated X-rays that reflect certain rare conditions so that we can combine them with real X-rays to have a sufficiently large database to train the neural networks to identify these conditions in other X-rays.”
“Deep learning only works if the volume of training data is large enough, and this is one way to ensure we have neural networks that can classify images with high precision,” concluded Professor Valaee. “We've been able to show that artificial data generated by deep convolutional GANs can be used to augment real datasets. This provides a greater quantity of data for training and improves the performance of these systems in identifying rare conditions.”
Related Links:
University of Toronto
In order to generate and continually improve artificial X-rays, researchers at the University of Toronto (Canada) used deep convolutional generative adversarial network (DCGAN) algorithms, which are made up of two networks: one that generates the images, and the other that tries to discriminate synthetic images from real images. The two networks are continuously trained until they reach a point in which the discriminator cannot differentiate real images from synthesized ones. Once a sufficient number of artificial X-rays are created, they are used to train another DCGAN that can classify the images accordingly.
The researchers then compared the accuracy of the artificially augmented dataset to the original one when fed through their AI system, and found that classification accuracy improved by 20% for common conditions. For some rare conditions, accuracy improved up to 40%. An advantage of the method is that as the synthetic X-rays are not real, the dataset can be readily available to researchers outside hospital premises without violating privacy concerns. The study was presented at the IEEE International Conference on Acoustics, Speech and Signal Processing, held during April 2018 in Calgary (Canada).
“In a sense, we are using machine learning to do machine learning,” said senior author and study presenter Professor Shahrokh Valaee, PhD, of the Machine Intelligence in Medicine Lab (MIMLab). “We are creating simulated X-rays that reflect certain rare conditions so that we can combine them with real X-rays to have a sufficiently large database to train the neural networks to identify these conditions in other X-rays.”
“Deep learning only works if the volume of training data is large enough, and this is one way to ensure we have neural networks that can classify images with high precision,” concluded Professor Valaee. “We've been able to show that artificial data generated by deep convolutional GANs can be used to augment real datasets. This provides a greater quantity of data for training and improves the performance of these systems in identifying rare conditions.”
Related Links:
University of Toronto
Latest Health IT News
- Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
- Smartwatches Could Detect Congestive Heart Failure
- Versatile Smart Patch Combines Health Monitoring and Drug Delivery
- Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients
- Strategic Collaboration to Develop and Integrate Generative AI into Healthcare
- AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity
- AI Predicts Pancreatic Cancer Three Years before Diagnosis from Patients’ Medical Records
- First Fully Autonomous Generative AI Personalized Medical Authorizations System Reduces Care Delay
- Electronic Health Records May Be Key to Improving Patient Care, Study Finds
- AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease
Channels
Critical Care
view channel
AI Model Analyzes Patient Data to Diagnose Multiple Sclerosis With 90% Accuracy
Multiple sclerosis (MS) is a chronic inflammatory condition affecting the central nervous system. Most patients initially experience the relapsing-remitting form (RRMS), characterized by periods of symptom... Read more
Magnetically Navigable Microparticles Enable Targeted Drug Delivery
Abdominal aortic aneurysms (AAA) can be life-threatening if not treated and result in nearly 10,000 deaths annually. Researchers working to improve treatments for AAA could now make it possible for doctors... Read more
AI-Powered Algorithm Automates Analysis of Coronary Stents After Implantation
Every year, over three million people globally receive stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after stent implantation remains a significant challenge.... Read moreSurgical Techniques
view channel
DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment
One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more