AI Tool Predicts Which COVID-19 Patients Can Develop Severe Respiratory Disease
By HospiMedica International staff writers Posted on 01 Apr 2020 |

Illustration
A new study has found that an artificial intelligence (AI) tool can accurately predict which patients who have been newly infected with the 2019 coronavirus disease (COVID-19) can go on to develop severe respiratory disease. The study was led by the NYU Grossman School of Medicine (New York City, NY) and NYU Courant Institute of Mathematical Sciences (New York City, NY) in partnership with Wenzhou Central Hospital (Wenzhou, China) and Cangnan People’s Hospital (Wenzhou, China). The study also revealed the best indicators of future severity, and found that they were not as expected.
For the study, the researchers gathered demographic, laboratory, and radiological findings collected from 53 patients who tested positive in January 2020 for the SARS-CoV-2 virus at the two Chinese hospitals. The patients initially had typically mild symptoms, including cough, fever, and stomach upset, although severe symptoms, including pneumonia, developed in a minority of patients within a week. The study aimed to determine whether AI techniques could help to accurately predict which patients with the virus would go on to develop acute respiratory distress syndrome (ARDS). The researchers also designed computer models that make decisions based on the data fed into them, with the programs becoming “smarter” with more data that they considered. The study used decision trees that track series of decisions between options and that model the potential consequences of choices at each step in a pathway.
The researchers were surprised to find that certain patterns seen in lung images, fever, and strong immune responses, were not useful in predicting which patients with initial, mild symptoms would go on to develop severe lung disease. Instead, the researchers found that the new AI tool identified changes in three features—levels of the liver enzyme alanine aminotransferase (ALT), reported myalgia, and hemoglobin levels—which were most accurately predictive of subsequent, severe disease. This, combined with other factors, allowed the AI tool to predict the risk of ARDS in patients infected with COVID-19 with up to 80% accuracy.
“While work remains to further validate our model, it holds promise as another tool to predict the patients most vulnerable to the virus, but only in support of physicians’ hard-won clinical experience in treating viral infections,” said corresponding study author Megan Coffee, MD, PhD, clinical assistant professor in the Department of Medicine and member of the Division of Infectious Diseases and Immunology at NYU Langone.
“Our goal was to design and deploy a decision-support tool using AI capabilities—mostly predictive analytics—to flag future clinical coronavirus severity,” said co-author Anasse Bari, PhD, a clinical assistant professor in computer science at NYU Courant Institute of Mathematical Science. “We hope that the tool, when fully developed, will be useful to physicians as they assess which moderately ill patients really need beds, and who can safely go home, when hospital resources are stretched thin.”
Related Links:
NYU Grossman School of Medicine
NYU Courant Institute of Mathematical Sciences
For the study, the researchers gathered demographic, laboratory, and radiological findings collected from 53 patients who tested positive in January 2020 for the SARS-CoV-2 virus at the two Chinese hospitals. The patients initially had typically mild symptoms, including cough, fever, and stomach upset, although severe symptoms, including pneumonia, developed in a minority of patients within a week. The study aimed to determine whether AI techniques could help to accurately predict which patients with the virus would go on to develop acute respiratory distress syndrome (ARDS). The researchers also designed computer models that make decisions based on the data fed into them, with the programs becoming “smarter” with more data that they considered. The study used decision trees that track series of decisions between options and that model the potential consequences of choices at each step in a pathway.
The researchers were surprised to find that certain patterns seen in lung images, fever, and strong immune responses, were not useful in predicting which patients with initial, mild symptoms would go on to develop severe lung disease. Instead, the researchers found that the new AI tool identified changes in three features—levels of the liver enzyme alanine aminotransferase (ALT), reported myalgia, and hemoglobin levels—which were most accurately predictive of subsequent, severe disease. This, combined with other factors, allowed the AI tool to predict the risk of ARDS in patients infected with COVID-19 with up to 80% accuracy.
“While work remains to further validate our model, it holds promise as another tool to predict the patients most vulnerable to the virus, but only in support of physicians’ hard-won clinical experience in treating viral infections,” said corresponding study author Megan Coffee, MD, PhD, clinical assistant professor in the Department of Medicine and member of the Division of Infectious Diseases and Immunology at NYU Langone.
“Our goal was to design and deploy a decision-support tool using AI capabilities—mostly predictive analytics—to flag future clinical coronavirus severity,” said co-author Anasse Bari, PhD, a clinical assistant professor in computer science at NYU Courant Institute of Mathematical Science. “We hope that the tool, when fully developed, will be useful to physicians as they assess which moderately ill patients really need beds, and who can safely go home, when hospital resources are stretched thin.”
Related Links:
NYU Grossman School of Medicine
NYU Courant Institute of Mathematical Sciences
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read moreSurgical Techniques
view channel
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more