EpiVax and Intravacc to Jointly Develop COVID-19 Vaccine Based on Novel 'Click-On' OMV Technology
By HospiMedica International staff writers Posted on 04 Jun 2020 |

Image: EpiVax and Intravacc to Jointly Develop COVID-19 Vaccine Based on Novel `Click-On` OMV Technology (Photo courtesy of Michael Salerno)
EpiVax, Inc. (Providence, RI, USA) and Intravacc (Bilthoven, Netherlands) have entered into a collaboration agreement to further progress a novel vaccine against COVID-19, based on Intravacc's proprietary Outer Membrane Vesicles (OMV) technology platform.
EpiVax is a biotechnology company with expertise in developing vaccines and therapeutics, while Intravacc is one of the world's leading translational research and development vaccine institutes, with an extensive track record in developing viral and bacterial vaccines. For the development of vaccines against pathogens, Intravacc has designed and developed a platform based on OMVs – spherical particles with intrinsic adjuvating properties. Using genetic engineering, the OMVs can be decorated with immunogenic peptides that combine T- cell epitopes that will drive effective adaptive immunity. Heterologous OMV vaccines are a suitable alternative approach to protect against pathogens that require a high level of containment, that are difficult to cultivate, or that contain viral and/or parasitic proteins. The antigens of choice are attached to the 'empty' OMV carrier resulting in a more effective immune response. Intravacc also has developed genetic tools to increase the yield of OMVs, to reduce toxicity, and to achieve the desired antigenic composition. Intravacc's OMV platform is fully scalable and allows for fast and efficient modification of antigen composition, either via genetic modification of the bacterial host or by associating antigens to stockpiled carrier OMVs.
For their joint research project, Intravacc will combine its safe and immunogenic OMV delivery platform with synthetically produced COVID-19 epitopes (protein allergens), designed and optimized by EpiVax using advanced immunoinformatics tools, in order to generate a safe and highly effective T-cell response against SARS-CoV-2 and related coronaviruses. Pre-clinical studies will start immediately so as to select the best candidate peptides for the vaccine. Intravacc will utilize its in-house pilot-scale facility for the GMP production of the OMV-peptide vaccine, for clinical (phase I) studies expecting to start in Q4 2020.
“We are thrilled to enter into a partnership with Intravacc using their very novel 'click-on' OMV technology and the highly immunogenic and safe SARS-CoV-2 multi-epitope-bearing peptides designed using the iVAX toolkit at EpiVax,” said Annie De Groot, MD, CEO and CSO of EpiVax. “We believe that the combination of technologies and the strength of our longstanding collaboration with Intravacc will lead to the development of an effective and safe vaccine that could rapidly benefit hundreds of millions of people around the globe.”
“A COVID-19 vaccine based on this approach is expected to be very safe and to reduce the morbidity and mortality rates associated with COVID-19,” said Dr. Jan Groen, CEO of Intravacc. “The vaccine is expected to lower the risk that individuals infected with SARS-CoV-2 will require hospitalization and/or intensive care. It also expected to induce long-term memory responses to prevent COVID-19 disease and infection from other beta-corona viruses. We expect that leveraging Intravacc's unique vaccine development expertise, broad-based network and successful track record in global technology transfer to vaccine manufacturers will bring success.”
Related Links:
EpiVax, Inc.
Intravacc
EpiVax is a biotechnology company with expertise in developing vaccines and therapeutics, while Intravacc is one of the world's leading translational research and development vaccine institutes, with an extensive track record in developing viral and bacterial vaccines. For the development of vaccines against pathogens, Intravacc has designed and developed a platform based on OMVs – spherical particles with intrinsic adjuvating properties. Using genetic engineering, the OMVs can be decorated with immunogenic peptides that combine T- cell epitopes that will drive effective adaptive immunity. Heterologous OMV vaccines are a suitable alternative approach to protect against pathogens that require a high level of containment, that are difficult to cultivate, or that contain viral and/or parasitic proteins. The antigens of choice are attached to the 'empty' OMV carrier resulting in a more effective immune response. Intravacc also has developed genetic tools to increase the yield of OMVs, to reduce toxicity, and to achieve the desired antigenic composition. Intravacc's OMV platform is fully scalable and allows for fast and efficient modification of antigen composition, either via genetic modification of the bacterial host or by associating antigens to stockpiled carrier OMVs.
For their joint research project, Intravacc will combine its safe and immunogenic OMV delivery platform with synthetically produced COVID-19 epitopes (protein allergens), designed and optimized by EpiVax using advanced immunoinformatics tools, in order to generate a safe and highly effective T-cell response against SARS-CoV-2 and related coronaviruses. Pre-clinical studies will start immediately so as to select the best candidate peptides for the vaccine. Intravacc will utilize its in-house pilot-scale facility for the GMP production of the OMV-peptide vaccine, for clinical (phase I) studies expecting to start in Q4 2020.
“We are thrilled to enter into a partnership with Intravacc using their very novel 'click-on' OMV technology and the highly immunogenic and safe SARS-CoV-2 multi-epitope-bearing peptides designed using the iVAX toolkit at EpiVax,” said Annie De Groot, MD, CEO and CSO of EpiVax. “We believe that the combination of technologies and the strength of our longstanding collaboration with Intravacc will lead to the development of an effective and safe vaccine that could rapidly benefit hundreds of millions of people around the globe.”
“A COVID-19 vaccine based on this approach is expected to be very safe and to reduce the morbidity and mortality rates associated with COVID-19,” said Dr. Jan Groen, CEO of Intravacc. “The vaccine is expected to lower the risk that individuals infected with SARS-CoV-2 will require hospitalization and/or intensive care. It also expected to induce long-term memory responses to prevent COVID-19 disease and infection from other beta-corona viruses. We expect that leveraging Intravacc's unique vaccine development expertise, broad-based network and successful track record in global technology transfer to vaccine manufacturers will bring success.”
Related Links:
EpiVax, Inc.
Intravacc
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreCritical Care
view channel
Novel Coating Significantly Extends Longevity of Implantable Biosensors
Wearable and implantable biosensors capable of accurately detecting biological molecules in a non-invasive or minimally invasive way offer enormous potential for monitoring patients’ health and their responses... Read more
Nanogel-Based Drug Delivery Technology to Improve UTI Treatment
Urinary tract infections (UTIs) are not only widespread and costly but also highly debilitating, significantly impacting the quality of life for those affected. The antibiotics commonly used to treat UTIs... Read more
New IV Pole Improves Safety and Ease of Administering IV Medications at Hospital Bedside
Preventable medication errors affect around 500,000 hospitalized patients in the U.S. every year. A significant portion of these errors occur with intravenous (IV) smart pumps, which require a precise... Read moreSurgical Techniques
view channel
Easy-To-Apply Gel Could Prevent Formation of Post-Surgical Abdominal Adhesions
Surgical adhesions are a frequent and often life-threatening complication following open or laparoscopic abdominal surgery. These adhesions develop in the weeks following surgery as the body heals.... Read more
Groundbreaking Leadless Pacemaker to Prevent Invasive Surgeries for Children
Leadless pacemakers marked a significant advancement in cardiac care, primarily because traditional pacemakers are dependent on leads, which are prone to breakage over time. Currently, two FDA-approved... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Becton Dickinson to Spin Out Biosciences and Diagnostic Solutions Business
Becton, Dickinson and Company (BD, Franklin Lakes, NJ, USA), has announced that its board of directors has unanimously authorized BD management to pursue a plan to separate BD's Biosciences and Diagnostic... Read more