COVID-19 HPC Consortium Aids Use of Machine Learning and Molecular Modelling to Improve Drug Discovery
By HospiMedica International staff writers Posted on 08 Jul 2020 |

Illustration
The COVID-19 High Performance Computing (HPC) Consortium has been launched to provide access to the world’s most powerful high-performance computing resources in support of COVID-19 research.
The COVID-19 HPC Consortium is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the US Department of Energy and IBM to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines. The consortium helps aggregate computing capabilities from the world's most powerful and advanced computers to help COVID-19 researchers execute complex computational research programs to help fight the virus.
Consortium members and affiliates manage a range of computing capabilities: from small clusters to some of the largest supercomputers in the world. They offer not only computational resources, but also software, services, and deep technical expertise to help COVID-19 researchers execute complex computational research programs. Collectively, the consortium offers access to 485 petaflops, five million CPUs, and 50,000 GPUs. Most of the collective power is delivered via supercomputers based on Intel technology. The consortium includes some of the world’s top-performing supercomputing centers, such as the Texas Advanced Computer Center (TACC) at The University of Texas, Department of Energy’s Argonne National Laboratory, and the Pittsburgh Supercomputing Center, among others.
Taking advantage of Intel technologies, scientists are advancing their algorithms and software in ways that are crucial for understanding COVID-19. For instance, scientists aim to combine machine learning (ML) and molecular modelling to improve virtual screening and drug discovery applications targeting COVID-19. They have developed a genetic algorithm capable of searching chemical space surrounding existing antiviral drugs and a deep learning based classification model based on existing public coronavirus binding data (for the SARS-CoV-2 main protease). The scientists plan to combine and extend these tools through a combination of docking and simulation which we can use as inputs to a regression based deep learning model. A key component of their approach will be to use an enhanced version of the out of distribution classification algorithms created previously to design novel kinase (CDK9) inhibitors to identify molecules which have maximum value in terms of expanding the validity of their model. Enhancing their model from a classification model to one capable of regression in this way should provide greatly enhanced capabilities to identify both existing drugs with potential to treat COVID-19 (virtual screening) as well as the discovery of new active compounds.
The COVID-19 HPC Consortium is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the US Department of Energy and IBM to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines. The consortium helps aggregate computing capabilities from the world's most powerful and advanced computers to help COVID-19 researchers execute complex computational research programs to help fight the virus.
Consortium members and affiliates manage a range of computing capabilities: from small clusters to some of the largest supercomputers in the world. They offer not only computational resources, but also software, services, and deep technical expertise to help COVID-19 researchers execute complex computational research programs. Collectively, the consortium offers access to 485 petaflops, five million CPUs, and 50,000 GPUs. Most of the collective power is delivered via supercomputers based on Intel technology. The consortium includes some of the world’s top-performing supercomputing centers, such as the Texas Advanced Computer Center (TACC) at The University of Texas, Department of Energy’s Argonne National Laboratory, and the Pittsburgh Supercomputing Center, among others.
Taking advantage of Intel technologies, scientists are advancing their algorithms and software in ways that are crucial for understanding COVID-19. For instance, scientists aim to combine machine learning (ML) and molecular modelling to improve virtual screening and drug discovery applications targeting COVID-19. They have developed a genetic algorithm capable of searching chemical space surrounding existing antiviral drugs and a deep learning based classification model based on existing public coronavirus binding data (for the SARS-CoV-2 main protease). The scientists plan to combine and extend these tools through a combination of docking and simulation which we can use as inputs to a regression based deep learning model. A key component of their approach will be to use an enhanced version of the out of distribution classification algorithms created previously to design novel kinase (CDK9) inhibitors to identify molecules which have maximum value in terms of expanding the validity of their model. Enhancing their model from a classification model to one capable of regression in this way should provide greatly enhanced capabilities to identify both existing drugs with potential to treat COVID-19 (virtual screening) as well as the discovery of new active compounds.
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
New Prostate Screening Device Could Replace Traditional Examination Method
Prostate cancer is a leading health concern, with one in seven men being diagnosed with the disease. Early detection is critical for improving patient outcomes, but traditional diagnostic methods, such... Read more
Adaptive Spine Board to Revolutionize ER Transport
Prolonged immobilization during transport, such as in combat zones or emergency rescues, poses a life-threatening risk for patients, particularly from pressure injuries. Pressure injuries, also known as... Read moreSurgical Techniques
view channel
LED-Based Imaging System Could Transform Cancer Detection in Endoscopy
Gastrointestinal cancers remain one of the most common and challenging forms of cancer to diagnose accurately. Despite the widespread use of endoscopy for screening and diagnosis, the procedure still misses... Read more
New Surgical Microscope Offers Precise 3D Imaging Using 48 Tiny Cameras
Surgeons have long relied on stereoscopic microscopes to gain depth perception during delicate procedures, but this method has limitations. While these microscopes provide a sense of three-dimensionality,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more