We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

COVID-19 Patients Have Low Oxygen Levels Due to Damaged Blood Cells, Finds Study

By HospiMedica International staff writers
Posted on 08 Jul 2020
Illustration
Illustration
A report by Reuters has stated that the damage caused by the coronavirus to the membranes of red blood cells that carry oxygen could explain why several COVID-19 patients have alarmingly low oxygen levels.

Researchers from the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) and Columbia University (New York, NY, USA) conducted a study combining state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. The researchers found that the RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. However, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume.

According to the researchers, the findings suggested a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. The increases in RBC glycolytic metabolites were consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.

"Since red cells circulate for up to 120 days, this could also help explain why it can take months to recover from the virus ... until enough new red cells without this damage are made and circulate," senior researcher Angelo D'Alessandro of the University of Colorado Anschutz Medical Campus told Reuters.

Related Links:
University of Colorado Anschutz Medical Campus
Columbia University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mammography System (Analog)
MAM VENUS
New
Half Apron
Demi

Channels

Critical Care

view channel
Image: Researchers have taken a major step toward cuff-free blood pressure monitoring (Photo courtesy of Gwyneth Moe/Boston University)

Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension

Hypertension affects nearly half of all adults in the U.S. and remains the leading cause of cardiovascular disease. Regular and accurate blood pressure monitoring is essential for managing this condition,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more