Moderna’s COVID-19 Vaccine Successfully Generates Robust Immune Response and Protection Against SARS-CoV-2 in Monkeys
|
By HospiMedica International staff writers Posted on 30 Jul 2020 |

Illustration
Moderna, Inc.’s (Cambridge, MA, USA) COVID-19 vaccine candidate, mRNA-1273, induced robust neutralizing antibodies and dose dependent increases in T cell responses, and led to protection against SARS-CoV-2 infection in the lungs and nose of non-human primates without evidence of vaccine-associated enhanced disease (VAERD).
mRNA-1273 is an mRNA vaccine against COVID-19 encoding for a prefusion stabilized form of the Spike (S) protein, which was co-developed by Moderna. A preclinical study evaluating mRNA-1273 showed a two-dose vaccination schedule of the COVID-19 vaccine candidate led to a robust immune response and protection against SARS-CoV-2 infection in the upper and lower airways in non-human primates, without evidence of VAERD.
In the study, immunogenicity and protective efficacy were assessed after a two-dose vaccination schedule of 10 or 100 µg doses of mRNA-1273 or control given four weeks apart. Four weeks after the second vaccination, animals were challenged with high doses of SARS-CoV-2 through intranasal and intratracheal routes. After two vaccinations, the immune response observed in this non-human primate study was consistent with the recently reported Phase 1 human study of mRNA-1273.
At the 10 µg dose, the geometric mean titer (GMT, ID50) measured in a pseudovirus (PsV) neutralization assay was 103, similar to the GMT for a panel of convalescent sera reported previously (109), and below the GMT achieved by mRNA-1273 in the Phase 1 human study at the 100 µg dose (231) in the same PsV assay. At the higher dose in the non-human primates (100 µg) neutralizing antibody titers increased further, with PsV GMT reaching 1,862. Vaccination also led to a significant increase in T cell responses, primarily Th1 CD4 T cells.
Two doses of mRNA-1273 provided protection against lung inflammation following viral challenge with SARS-CoV-2 in non-human primates at both the 10 µg and 100 µg dose levels. In addition, both the 10 µg and 100 µg dose groups demonstrated protection against viral replication in the lungs, with the 100 µg dose also protecting against viral replication in the nose of the animals. Of note, none of the eight animals in the 100 µg group showed detectable viral replication in the nose compared to six out of eight in the placebo group on day 2.
“This important preclinical study shows that mRNA-1273 protected against a high dose SARS-CoV-2 infection in non-human primates and prevented pulmonary disease in all animals, further supporting the clinical advancement of mRNA-1273,” said Stephen Hoge, M.D., President at Moderna. “We believe this is the first demonstration of control of viral replication within two days of challenge in both the nose and lungs in non-human primates by a vaccine against COVID-19. Given the similarity between the protective immune response generated by mRNA-1273 in this study and the immune response seen in humans in the recently published Phase 1 clinical data for the vaccine, we remain cautiously optimistic that mRNA-1273 will be able to prevent COVID-19 disease and may also slow the spread of SARS-CoV-2 by shortening the duration of shedding.”
Related Links:
Moderna, Inc.
mRNA-1273 is an mRNA vaccine against COVID-19 encoding for a prefusion stabilized form of the Spike (S) protein, which was co-developed by Moderna. A preclinical study evaluating mRNA-1273 showed a two-dose vaccination schedule of the COVID-19 vaccine candidate led to a robust immune response and protection against SARS-CoV-2 infection in the upper and lower airways in non-human primates, without evidence of VAERD.
In the study, immunogenicity and protective efficacy were assessed after a two-dose vaccination schedule of 10 or 100 µg doses of mRNA-1273 or control given four weeks apart. Four weeks after the second vaccination, animals were challenged with high doses of SARS-CoV-2 through intranasal and intratracheal routes. After two vaccinations, the immune response observed in this non-human primate study was consistent with the recently reported Phase 1 human study of mRNA-1273.
At the 10 µg dose, the geometric mean titer (GMT, ID50) measured in a pseudovirus (PsV) neutralization assay was 103, similar to the GMT for a panel of convalescent sera reported previously (109), and below the GMT achieved by mRNA-1273 in the Phase 1 human study at the 100 µg dose (231) in the same PsV assay. At the higher dose in the non-human primates (100 µg) neutralizing antibody titers increased further, with PsV GMT reaching 1,862. Vaccination also led to a significant increase in T cell responses, primarily Th1 CD4 T cells.
Two doses of mRNA-1273 provided protection against lung inflammation following viral challenge with SARS-CoV-2 in non-human primates at both the 10 µg and 100 µg dose levels. In addition, both the 10 µg and 100 µg dose groups demonstrated protection against viral replication in the lungs, with the 100 µg dose also protecting against viral replication in the nose of the animals. Of note, none of the eight animals in the 100 µg group showed detectable viral replication in the nose compared to six out of eight in the placebo group on day 2.
“This important preclinical study shows that mRNA-1273 protected against a high dose SARS-CoV-2 infection in non-human primates and prevented pulmonary disease in all animals, further supporting the clinical advancement of mRNA-1273,” said Stephen Hoge, M.D., President at Moderna. “We believe this is the first demonstration of control of viral replication within two days of challenge in both the nose and lungs in non-human primates by a vaccine against COVID-19. Given the similarity between the protective immune response generated by mRNA-1273 in this study and the immune response seen in humans in the recently published Phase 1 clinical data for the vaccine, we remain cautiously optimistic that mRNA-1273 will be able to prevent COVID-19 disease and may also slow the spread of SARS-CoV-2 by shortening the duration of shedding.”
Related Links:
Moderna, Inc.
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
Monitoring blood flow in the brain is crucial for diagnosing and treating neurological conditions such as stroke, traumatic brain injury (TBI), and vascular dementia. However, current imaging methods like... Read more
AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read moreSurgical Techniques
view channel
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more
Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more








