AI-Based Digital Biomarker Could Assist in Early Intervention in High-Risk COVID-19 Patients
|
By HospiMedica International staff writers Posted on 22 Sep 2020 |

Image: AI-Based Digital Biomarker Could Assist in Early Intervention in High-Risk COVID-19 Patients (Photo courtesy of Business Wire)
A first-in-kind tool that collects and analyzes continuous physiologic data could provide early clinical indicators of COVID-19 decompensation, offering healthcare providers invaluable insight necessary to intervene earlier and reduce poor patient outcome.
The National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH Bethesda, MA, USA) have awarded a contract to PhysIQ (Chicago, IL, USA) to develop an AI-based COVID-19 Decompensation Index (CDI) Digital Biomarker to address the rapid decline of high-risk COVID-19 patients. The new early warning system under development could allow providers to intervene sooner when a COVID-19 patient is clinically surveilled from home and begins to worsen. Rather than relying on point measurements, such as temperature and SpO2, that are known to be lagging or insensitive indicators of COVID-19 decompensation, continuous multi-parameter vital signs will be used to establish a targeted biomarker for COVID-19.
PhysIQ will develop and validate a CDI algorithm that builds off existing wearable biosensor-derived analytics generated by physIQ’s pinpointIQ end-to-end cloud platform for continuous monitoring of physiology. The data will be gathered through a clinical study of COVID-19 positive patients and build upon work already in-place for monitoring COVID-19 patients convalescing at home. For patients who participate in the program, physiological data will be collected before and after their admission to the hospital.
In the development phase of this project, physIQ and its clinical partner will monitor participants who are confirmed COVID-19 positive, whether recovering at home or following a discharge from the hospital. During the validation phase, physIQ will evaluate lead time to event statistics, decompensation severity assessments, and the ability for CDI to predict decompensation severity. The study is designed to capture data from a large, diverse population to investigate CDI performance differences among subgroups based on sex/gender and racial/ethnic characteristics. The project will not only enable the development and validation of the CDI, but also collect rich clinical data correlative with outcomes and symptomology related to COVID-19 infection. The index will build on physIQ’s prior FDA-cleared, AI-based multivariate change index (MCI) that has amassed more than 1.5 million hours of physiologic data, supporting development of this targeted digital biomarker for COVID-19.
“Despite the technological advances and attention paid to COVID-19, the healthcare community is still monitoring patient vitals the very same way as we did in the 1800s,” said Steven Steinhubl MD, Director of Digital Medicine at Scripps Translational Science Institute (STSI) and a physIQ advisor. “With the advances in digital technology, AI and wearable biosensors, we can deliver personalized medicine remotely giving caregivers new tools to proactively address this pandemic. For that reason alone, this decision by the NIH has the potential to have a monumental impact on our healthcare system and how we manage COVID-19 patients.”
Related Links:
The National Institutes of Health (NIH)
PhysIQ
The National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH Bethesda, MA, USA) have awarded a contract to PhysIQ (Chicago, IL, USA) to develop an AI-based COVID-19 Decompensation Index (CDI) Digital Biomarker to address the rapid decline of high-risk COVID-19 patients. The new early warning system under development could allow providers to intervene sooner when a COVID-19 patient is clinically surveilled from home and begins to worsen. Rather than relying on point measurements, such as temperature and SpO2, that are known to be lagging or insensitive indicators of COVID-19 decompensation, continuous multi-parameter vital signs will be used to establish a targeted biomarker for COVID-19.
PhysIQ will develop and validate a CDI algorithm that builds off existing wearable biosensor-derived analytics generated by physIQ’s pinpointIQ end-to-end cloud platform for continuous monitoring of physiology. The data will be gathered through a clinical study of COVID-19 positive patients and build upon work already in-place for monitoring COVID-19 patients convalescing at home. For patients who participate in the program, physiological data will be collected before and after their admission to the hospital.
In the development phase of this project, physIQ and its clinical partner will monitor participants who are confirmed COVID-19 positive, whether recovering at home or following a discharge from the hospital. During the validation phase, physIQ will evaluate lead time to event statistics, decompensation severity assessments, and the ability for CDI to predict decompensation severity. The study is designed to capture data from a large, diverse population to investigate CDI performance differences among subgroups based on sex/gender and racial/ethnic characteristics. The project will not only enable the development and validation of the CDI, but also collect rich clinical data correlative with outcomes and symptomology related to COVID-19 infection. The index will build on physIQ’s prior FDA-cleared, AI-based multivariate change index (MCI) that has amassed more than 1.5 million hours of physiologic data, supporting development of this targeted digital biomarker for COVID-19.
“Despite the technological advances and attention paid to COVID-19, the healthcare community is still monitoring patient vitals the very same way as we did in the 1800s,” said Steven Steinhubl MD, Director of Digital Medicine at Scripps Translational Science Institute (STSI) and a physIQ advisor. “With the advances in digital technology, AI and wearable biosensors, we can deliver personalized medicine remotely giving caregivers new tools to proactively address this pandemic. For that reason alone, this decision by the NIH has the potential to have a monumental impact on our healthcare system and how we manage COVID-19 patients.”
Related Links:
The National Institutes of Health (NIH)
PhysIQ
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Magnetically Guided Microrobots to Enable Targeted Drug Delivery
Stroke affects 12 million people globally each year, often causing death or lasting disability. Current treatment relies on systemic administration of clot-dissolving drugs, which circulate throughout... Read more
Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
Traumatic brain injury (TBI) continues to leave millions with long-term disabilities every year. After a sudden impact from a fall, collision, or accident, the brain undergoes inflammation, oxidative stress,... Read more
Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
Blood loss during or after surgery can place significant stress on people with heart disease, increasing the risk of dangerous complications. Transfusions are often delayed until hemoglobin levels fall... Read moreSurgical Techniques
view channel
New Study Findings Could Halve Number of Stent Procedures
When a coronary artery becomes acutely blocked during a heart attack, opening it immediately is essential to prevent irreversible damage. However, many patients also have other narrowed vessels that appear... Read more
Breakthrough Surgical Device Redefines Hip Arthroscopy
Hip arthroscopy has surged in popularity, yet surgeons still face major mechanical constraints when navigating deep joint spaces through traditional cannulas. Limited tool mobility and the need for an... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more








