HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Future COVID-19 Tests Could Be Based on Biomarkers and Molecular Profiles of Individuals

By HospiMedica International staff writers
Posted on 23 Oct 2020
Illustration
Illustration
A new study has shown how variations in SARS-CoV-2 host gene expression can be linked to variations in COVID-19 susceptibility and symptom severity. This could pave the way for better medical tests based on biomarkers and molecular profiles of individuals, to accommodate these variations in monitoring virus transmission and disease pathology, which helps guide mitigation and treatment options.

People have different susceptibilities to the SARS-CoV-2 virus and develop varying degrees of fever, fatigue, and breathing problems - common symptoms of the illness. Scientists at the University of California, Riverside (Riverside, CA, USA) and University of Southern California (Los Angeles, CA, USA) may have an answer to explain this variation. The scientists have shown for the first time that the observed COVID-19 variability may have underlying molecular sources. The finding could help in the development of effective prophylactic and therapeutic strategies against the disease.

The SARS-CoV-2 virus hijacks human host molecules for fusion and virus replication, attacking human cellular functions. These human host molecules are collectively called SARS-CoV-2 host genes. The scientists systematically analyzed SARS-CoV-2 host gene expression, their variations, and age- and sex-dependency in the human population using large-scale genomics, transcriptomics, and proteomics. They first found similarity of host gene expression is generally correlated with tissue vulnerability to SARS-CoV-2 infection. Among the six most variably expressed genes in the population they identified ACE2, CLEC4G, and CLEC4M, which are known to interact with the spike protein of SARS-CoV-2.

Higher expression of these genes likely increases the possibility of being infected and of developing severe symptoms. Other variable genes include SLC27A2 and PKP2, both known to inhibit virus replication; and PTGS2, which mediates fever response. The scientists also identified genetic variants linked to variable expression of these genes. According to them, the expression profiles of these marker genes may help better categorize risk groups. In addition to identifying the most variable SARS-CoV-2 host genes, results from the study suggest genetic and multiple biological factors underlie the population variation in SARS-CoV-2 infection and symptom severity. Next, the researchers plan to further analyze large scale genotypes and transcriptome data of COVID-19 patients when made available and to refine the results for higher association and accuracy.

“Based on biomarkers and molecular profiles of individuals, one would hope to develop better medical tests to accommodate these variations in monitoring virus transmission and disease pathology, which helps guide mitigation and treatment options,” said Sika Zheng, an associate professor of biomedical sciences at the UC Riverside School of Medicine, who led the study.

“More comprehensive risk assessment can better guide the early stage of vaccine distribution,” added Zheng. “Tests can also be developed to include these molecular markers to better monitor disease progression. They can also be used to stratify patients to assess and ultimately enhance treatment effectiveness.”

Related Links:
University of California

Gold Member
CPAP Ventilator
Somnus DM18
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Syringes
Prefilled Saline Flush Syringes
Ureteral Dilatation Balloon
Dornier Equinox

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more