Highly Advanced AI Model Precisely Detects COVID-19 by Analyzing Lung Images
By HospiMedica International staff writers Posted on 13 Aug 2021 |

Illustration
Researchers have designed and validated an image-based detection of COVID-19 with the aid of artificial intelligence (AI) models by using a model to automatically collect imaging data from the lung lobes. This data was then analyzed to yield features as potential diagnostic biomarkers for COVID-19.
These diagnostic biomarkers using the AI model were subsequently used to differentiate COVID-19 patients from both pneumonia and healthy patients. The entire model was developed by researchers from the Terasaki Institute for Biomedical Innovation (TIBI; Los Angeles, CA, USA) with a cohort of 704 chest X-rays and then independently validated with 1,597 cases from multiple sources comprised of healthy, pneumonia, and COVID-19 patients. The results showed excellent performance by the model in classifying diagnoses of the various patients.
Medical imaging has long been a vital tool for the diagnosis and prognostic assessments of many diseases. In recent years, the use of AI models has been used in conjunction with this imaging to augment their diagnostic capabilities. By using these models, some features can be extracted from images that may reveal disease characteristics not identified by the naked eye. The power to process data in this intelligent manner can have a big impact on the medical field, especially with the current growth in imaging features and the need for high precision in medical decisions.
There is a huge demand for rapid and accurate detection of COVID-19 infection. The primary detection method has been using reverse transcription-polymerase chain reaction (RT-PCR) on samples collected from nasal or throat swabs. However, this method is subject to inaccuracies due to sampling errors, low viral load, and the method’s sensitivity limitations. This is an especially significant issue for patients who are in the early stages of infection. An additional diagnostic tool for COVID-19 can come from images of lungs. For diagnosing lung diseases, chest X-rays or CT scans are the primary resources, and they can be used to distinguish COVID-19 from other types of lung injuries, as well as to assess the severity of lung involvement in COVID-19. These types of images can enhance the diagnostic capabilities for COVID-19 patients, especially if they are coupled with AI models. The use of computer modeling with data extracted from medical images shows great promise in enabling precision medicine and can revolutionize medical practice in the clinic. Developing methodologies to capture entire sets of information while suppressing irrelevant features enhances the reliability of AI models. The proposed approach would be a step towards applying them in precision medicine and can provide an efficient, inexpensive, and non-invasive way to strengthen the diagnostic capabilities of imaging.
“This highly advanced artificial intelligence model further helps our ability to precisely detect COVID-19 patients. In addition, such a model can be applied for diagnosis of other diseases using different imaging modalities,” said lead researcher Samad Ahadian, Ph.D.
“Artificial intelligence-driven models with diagnostic and predictive capabilities are a powerful tool that are an important part of our research platforms here at the institute,” said Ali Khademhosseini, Ph.D., Director and CEO of TIBI. “This will carry over into countless applications in the biomedical field and in the clinic.”
Related Links:
Terasaki Institute for Biomedical Innovation
These diagnostic biomarkers using the AI model were subsequently used to differentiate COVID-19 patients from both pneumonia and healthy patients. The entire model was developed by researchers from the Terasaki Institute for Biomedical Innovation (TIBI; Los Angeles, CA, USA) with a cohort of 704 chest X-rays and then independently validated with 1,597 cases from multiple sources comprised of healthy, pneumonia, and COVID-19 patients. The results showed excellent performance by the model in classifying diagnoses of the various patients.
Medical imaging has long been a vital tool for the diagnosis and prognostic assessments of many diseases. In recent years, the use of AI models has been used in conjunction with this imaging to augment their diagnostic capabilities. By using these models, some features can be extracted from images that may reveal disease characteristics not identified by the naked eye. The power to process data in this intelligent manner can have a big impact on the medical field, especially with the current growth in imaging features and the need for high precision in medical decisions.
There is a huge demand for rapid and accurate detection of COVID-19 infection. The primary detection method has been using reverse transcription-polymerase chain reaction (RT-PCR) on samples collected from nasal or throat swabs. However, this method is subject to inaccuracies due to sampling errors, low viral load, and the method’s sensitivity limitations. This is an especially significant issue for patients who are in the early stages of infection. An additional diagnostic tool for COVID-19 can come from images of lungs. For diagnosing lung diseases, chest X-rays or CT scans are the primary resources, and they can be used to distinguish COVID-19 from other types of lung injuries, as well as to assess the severity of lung involvement in COVID-19. These types of images can enhance the diagnostic capabilities for COVID-19 patients, especially if they are coupled with AI models. The use of computer modeling with data extracted from medical images shows great promise in enabling precision medicine and can revolutionize medical practice in the clinic. Developing methodologies to capture entire sets of information while suppressing irrelevant features enhances the reliability of AI models. The proposed approach would be a step towards applying them in precision medicine and can provide an efficient, inexpensive, and non-invasive way to strengthen the diagnostic capabilities of imaging.
“This highly advanced artificial intelligence model further helps our ability to precisely detect COVID-19 patients. In addition, such a model can be applied for diagnosis of other diseases using different imaging modalities,” said lead researcher Samad Ahadian, Ph.D.
“Artificial intelligence-driven models with diagnostic and predictive capabilities are a powerful tool that are an important part of our research platforms here at the institute,” said Ali Khademhosseini, Ph.D., Director and CEO of TIBI. “This will carry over into countless applications in the biomedical field and in the clinic.”
Related Links:
Terasaki Institute for Biomedical Innovation
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Artificial Intelligence
view channel
Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates
Heart researchers have utilized an innovative risk assessment score to accurately predict whether patients being evaluated for kidney transplants are at risk for future major cardiac events, such as a... Read more
AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs
Liver disease, which is treatable when detected early, often goes unnoticed until it reaches advanced stages. Metabolic-associated steatotic liver disease (MASLD), the most prevalent form of liver disease,... Read moreCritical Care
view channel
AI Eye Scans Could Help Identify Heart Disease and Stroke Risk
New research has explored the advantages of utilizing artificial intelligence (AI) retinal imaging for screening cardiovascular diseases in general practice (GP) clinics and highlighted areas where improvements... Read more
Digital Heart Twin Improves Diagnosis and Treatment of Cardiac Arrhythmias
Millions of individuals around the globe suffer from cardiac arrhythmias. Traditionally, electrocardiography (ECG) has been used to detect premature ventricular contractions (PVCs), one of the most common... Read more
First-Of-Its-Kind AI-Powered Probability Scoring System Assesses Heart Failure with Preserved Ejection Fraction
Heart failure with preserved ejection fraction (HFpEF) is one of the most difficult types of heart failure to diagnose due to the intricate interaction between various clinical and echocardiographic factors.... Read moreSurgical Techniques
view channel
New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation
Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more
Minimally Invasive Valve Repair Reduces Hospitalizations in Severe Tricuspid Regurgitation Patients
The tricuspid valve is one of the four heart valves, responsible for regulating blood flow from the right atrium (the heart's upper-right chamber) to the right ventricle (the lower-right chamber).... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read morePoint of Care
view channel
Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour
Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Smartphone-Enabled, Paper-Based Quantitative Diagnostic Platform Transforms POC Testing
Point-of-care diagnostics are crucial for public health, offering rapid, on-site testing that enables prompt diagnosis and treatment. This is especially valuable in remote or underserved regions where... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more