HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Computer Vision Analyzes Stroke Rehabilitation Process

By HospiMedica International staff writers
Posted on 31 Jan 2018
Print article
Image: Red trajectories show grasp movements after stroke, while green trajectories show rehabilitation (Photo courtesy of Tabea Kraus/ ETH).
Image: Red trajectories show grasp movements after stroke, while green trajectories show rehabilitation (Photo courtesy of Tabea Kraus/ ETH).
A new study shows how optogenetics and machine learning can be used to analyze changes in motor skills, aiding stroke patient recovery.

Developed at the Swiss Federal Institute of Technology (ETH; Zurich, Switzerland), the University of Heidelberg (Germany), and other institutions, the new therapeutic approach is based on using optogenetics to activate corticospinal circuitry. The optogenetic stimulation, in conjunction with intense, scheduled rehabilitation can lead to the restoration of lost movement patterns (rather than induced compensatory actions), as revealed by a computer vision-based automatic behavior analysis in a stroke model study in rats.

The rat movements were recorded with a video camera and automatically analyzed to monitor the rehabilitation process to adjust the optogenetic stimulation. The results revealed that optogenetically activated corticospinal neurons promote axonal sprouting from the intact to the denervated cervical hemi-cord. Conversely, silencing subsets of corticospinal neurons in the recovered animals resulted in mistargeting of restored grasping function, identifying reestablishment of specific, anatomically localized cortical microcircuits. The study was published on October 30, 2017, in Nature Communications.

“Using our automatic evaluation of the movement processes, we were able to demonstrate a full recovery,” said senior author Professor Björn Ommer, PhD, of the Heidelberg University Interdisciplinary Center for Scientific Computing (IWR). “The new computer vision technique is able to quantify even the slightest changes in motor functions. By recording and analyzing the movements, we can objectively assess whether there was true restoration of the original function or merely compensation.”

“Neurorehabilitation is the only treatment option for the majority of stroke victims. Many approaches in basic science and in the clinic aim to trigger regeneration processes post-stroke by stimulating healthy brain regions of indeterminate size,” said lead author neuroscientist Anna-Sophia Wahl, MD, PhD, of ETH. “These results provide a conceptual framework to improve established clinical techniques such as transcranial magnetic or transcranial direct current stimulation in stroke patients.”

Optogenetics is a biological technique which involves the use of light to control cells in living tissue that have been genetically modified to express light-sensitive ion channels. For neuromodulation, it is used to control and monitor the activities of individual neurons in living tissue. Key reagents in optogenetics include light-sensitive proteins, such as channelrhodopsin, halorhodopsin, and archaerhodopsin, while optical recording of neuronal activities can be made with the help of optogenetic sensors for calcium (GCaMP), vesicular release (synapto-pHluorin), Neurotransmitter (GluSnFRs), or membrane voltage.

Related Links:
Swiss Federal Institute of Technology
University of Heidelberg
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more