We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D Modeling System Accurately Predicts Pediatric Donor Heart Volumes

By HospiMedica International staff writers
Posted on 24 Nov 2015
Print article
Image: 3D scan a child’s heart born with congenital heart defects (Photo courtesy of the Phoenix Children’s Hospital).
Image: 3D scan a child’s heart born with congenital heart defects (Photo courtesy of the Phoenix Children’s Hospital).
A new three dimensional (3D) computer modeling system may more accurately identify the best donor heart for a pediatric transplant patient.

To develop the new 3D system, researchers at Arizona State University (ASU; Tempe, USA) and Phoenix Children’s Hospital (AZ, USA) first created a library of 3D reconstructed hearts in healthy children weighing up to 45 kilograms, using magnetic resonance imaging (MRI) and computerized tomography (CT) scans. They then used the virtual library to predict the best donor body weight/heart size correlation needed for pediatric transplant recipients. Concomitantly, they examined before and after images from infants who had already received a heart transplant.

When the researchers compared the post-operative data from the real infants with the virtual transplant images, they found that the 3D imaging system accurately identified an appropriate size heart, validating their findings. The researchers are currently expanding the virtual library to improve prognostic capabilities, thus allowing more effective organ allocation and minimizing the number of otherwise acceptable organs that are ultimately discarded. The study was presented at the annual American Heart Association (AHA) Scientific Sessions, held during November 2015 in Orlando (FL, USA).

“It is critical to optimize the range of acceptable donors for each child. 3D reconstruction has tremendous potential to improve donor size matching,” said lead author and study presenter Jonathan Plasencia, BSc, of the ASU image processing applications lab. “We feel that we now have evidence that 3D matching can improve selection and hope this will soon help transplant doctors, patients, and their parents make the best decision by taking some of the uncertainty out of this difficult situation.”

“Analyzing future transplant cases using 3D matching will allow us to predict the true upper and lower limits of acceptable donor size. The big question is how long it will take to further test the technique and move it into actual use,” concluded Mr. Plasencia, who is a PhD student at ASU. “One day transplant teams may be able to use the 3D process to perform virtual transplants before an actual procedure to rapidly measure a donated heart to ensure a better fit and to reduce the risk of mismatching in pediatric transplants.”

Transplant centers currently assess compatibility of a potential donor heart by comparing the donor weight to the recipient weight, and then picking an upper and lower limit based on the size of the patient’s heart on chest X-ray. But the assessment is not precise and variations in size and volume can have a major effect on the recipient’s outcome.

Related Links:

Arizona State University
Phoenix Children’s Hospital 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
ECG Monitoring Solution
Bardy CAM Patch

Print article

Channels

Critical Care

view channel
Image: A full readout from the new AI algorithm that helps read EEGs (Photo courtesy of Duke University)

AI Doubles Medical Professionals’ Accuracy in Reading EEG Charts of ICU Patients

Electroencephalography (EEG) readings are crucial for detecting when unconscious patients may be experiencing or are at risk of seizures. EEGs involve placing small sensors on the scalp to measure the... Read more

Surgical Techniques

view channel
Image: GI procedures can produce dangerous levels of smoke (Photo courtesy of 123RF)

Study Warns Against Dangerous Smoke Levels Produced During Endoscopic Gastrointestinal Procedures

Healthcare professionals involved in certain smoke-generating endoscopic gastrointestinal procedures, such as those using electrical current to excise polyps, may be exposed to toxin levels comparable... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more