We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Innovative Spectrograph Has Medical Applications

By HospiMedica International staff writers
Posted on 17 Nov 2009
Print article
A high-precision spectograph holds promise in multiple applications, from the early detection of diseases to monitoring for chemical weapons and environmental pollutants.

Researchers at PAIR Technologies (Newark, DE, USA) developed the new sensor, a planar array infrared (PAIR) spectrograph, which can identify biological and chemical agents in solids, liquids, and gases, present at low levels, and in less than a second. The new spectrograph has no moving parts, and relies on a focal plane array (FPA) detector which consists of a cluster of light-sensing pixels at the focal plane of a lens to receive optically dispersed infrared light, displaying the individual wavelength components. The detected image can be immediately converted to a spectrum by either plotting intensity versus pixel location for a single row, or by first coaveraging a number of rows before carrying out this operation. Since the PAIR instrument contains a slit, image curvature occurs, but proprietary software removes any frequency variations from row-to-row due to misalignment of the spectra caused by image curvature. Because the PAIR instrument incorporates an ultrafast FPA, it is capable of obtaining an IR spectrum in less than 100 µsec integration times; this enables a whole range of kinetics and dynamics experiments to be carried out that were previously inaccessible. The patent of PAIR technology belongs to the University of Delaware (Newark, USA; www.udel.edu), which also has a minority position in the company.

"This is a rugged replacement for the existing technology, taking it out of the lab and into the field," said Bruce Chase, Ph.D., PAIR cofounder, who recently retired from DuPont (Wilmington, DE, USA) as a research chemist. "Our instrument has no moving parts. It's durable, compact, and portable -- you can carry it out to your local stream or use it in a doctor's or dentist's office."

Current detection technology, which is based on Fourier Transform Infrared (FT-IR) spectrography, requires tens of minutes to chemically identify a molecular fingerprint. An FT-IR spectrograph divides the infrared light source into two beams that reflect off both a fixed and a moving mirror. Two separate experiments must be run for every analysis, one with the sample, and one without, to account for any environmental interference, which must be mathematically reconciled. Additionally, the sample chamber must be purged with nitrogen gas to displace any water vapor.

Besides medical, environmental, and military monitoring solutions, the researchers see applications in industry to help maintain and improve manufacturing processes, ensuring, for example, the purity of pharmaceutical drugs or the thickness of paints or polymer coatings.

Related Links:
PAIR Technologies

University of Delaware



Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Surgical Table
STERIS 5085 SRT

Print article

Channels

Critical Care

view channel
Image: The largest scale analysis compared longer-term percutaneous devices for aortic valve replacement versus surgery (Photo courtesy of Adobe Stock)

Transcatheter Valve Replacement Outcomes Similar To Surgery, Finds Study

A new study has shown that a minimally invasive procedure for replacing the aortic valve in the heart—known as transcatheter aortic valve replacement (TAVR)—is on par with the more traditional surgical... Read more

Surgical Techniques

view channel
Image: The AR tech allows for sub-millimeter accuracy, helping to potentially reduce risks (Photo courtesy of Medivis)

AR Surgical Technology Translates Complex 2D Medical Imaging to Enhance Accuracy

Surgeons often have to switch their focus between a patient’s data displayed on a screen or clipboard and the patient themselves during procedures. But that is about to change. Surgeons can now utilize... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more