We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Approaches for Transcanial Ultrasound Used for the Treatment of Brain Tumors and Targeted Drug Delivery

By HospiMedica International staff writers
Posted on 17 Aug 2014
Print article
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Ultrasound image of the Circle of Willis (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
Image: Doppler ultrasound waveform of flow velocities in the middle cerebral artery (Photo courtesy of the Swedish Cerebrovascular Center, Seattle, WA, USA).
A study completed by a Finnish researcher provides new insights into the limitations and potential new directions for the future advancement of transcranial ultrasound therapy. Active research is ongoing in this field, which potentially can be applied to the treatment of brain tumors and targeted drug delivery.

The therapy modality has already been effectively applied to the treatment of neuropathic pain disorder and essential tremors. The benefits of transcranial ultrasound therapy include minimal invasiveness, because the treatment is delivered to the brain by transmitting ultrasound through the intact skull of the patient. The study focuses on two issues that may potentially restrict the applicability of transcranial ultrasound: skull-base heating and formation of standing-waves.

As the ultrasound beam encounters the skull bone, part of the beam’s energy is transferred into the skull as heat. In the study, it was found that the heating of the skull-base during transcranial ultrasound therapy can result in hazardous temperature elevations when the sonications are performed close to the skull-base. Three new approaches were developed in this study to counteract this potentially hazardous phenomenon.

However, standing waves are formed in the ultrasound field when waves reflect from the surface of the skull bone. During transcranial ultrasound therapy, the ultrasound amplitude can reach higher levels than intended if these reflections are not taken into account during the initial treatment planning. The study, a project that came out of a PhD thesis by Aki Pulkkinen, MSc, from the University of Eastern Finland (Joensuu), revealed that the formation of standing waves is greatly reduced when specifically designed large-area ultrasound transducers are used.

The study also introduces a model to numerically simulate clinical patient treatments performed with transcranial ultrasound therapy. The predictions produced by the model were compared to observations done in clinical patient trials performed earlier. The predictions were found to be of sufficient accuracy for an initial treatment planning. However, more accurate characterization of the acoustical and thermal parameters involved in transcranial ultrasound therapy is nonetheless required.

The Ph.D. thesis by Aki Pulkkinen, MSc, entitled Simulation Methods in Transcranial Ultrasound Therapy, is available online (please see Related Links below).

Related Links:

Simulation Methods in Transcranial Ultrasound Therapy
University of Eastern Finland


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
24.5-inch Full HD 2D OLED Medical Monitor
PVM-2551MD

Print article

Channels

Surgical Techniques

view channel
Image: The ProScan AI assisted reading tool is designed to unlock the future of gastroenterology (Photo courtesy of AnX Robotica)

AI Assisted Reading Tool for Small Bowel Video Capsule Endoscopy Detects More Lesions

A revolutionary artificial intelligence (AI) technology that has proven faster and more accurate in diagnosing small bowel bleeding could transform gastrointestinal medicine. AnX Robotica (Plano, TX,... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more