HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D Printing and CT Imaging Used to Guide Human Face Transplants

By HospiMedica International staff writers
Posted on 17 Dec 2014
Print article
Image: This shows a 3D print model used in surgical planning (Photo courtyes of RSNA).
Image: This shows a 3D print model used in surgical planning (Photo courtyes of RSNA).
Surgeons are using computed tomography (CT) imaging and three-dimensional (3-D) printing technology to reconstruct life-size models of patients’ heads to help better control the outcome in face transplantation surgery.

The study’s findings were presented at the annual meeting of the Radiological Society of North America (RSNA), held in Chicago, IL, USA; November 30 to December 5, 2014. Physicians from Brigham and Women’s Hospital (Boston, MA, USA) performed the first US full-face transplantation in 2011 and have subsequently completed four additional face transplants. The procedure is performed on patients who have lost some or all of their face as a result of disease or injury.

In the study, researchers led by Frank J. Rybicki, MD, radiologist and director of the hospital’s Applied Imaging Science Laboratory, Bohdan Pomahac, MD, lead face transplantation surgeon, and Amir Imanzadeh, MD, research fellow, assessed the clinical impact of using 3-D printed models of the recipient’s head in the planning of face transplantation surgery. “This is a complex surgery and its success is dependent on surgical planning,” Dr. Rybicki said. “Our study demonstrated that if you use this model and hold the skull in your hand, there is no better way to plan the procedure.”

Each of the transplant patients underwent preoperative CT scanning with 3-D visualization. To build each life-size skull model, the CT images of the transplant recipient’s head were segmented and processed using specialized software, creating customized data files that were input into a 3-D printer. “In some patients, we need to modify the recipient’s facial bones prior to transplantation,” Dr. Imanzadeh said. “The 3-D printed model helps us to prepare the facial structures so when the actual transplantation occurs, the surgery goes more smoothly.”

Although the entire transplant procedure lasts as long as 25 hours, the actual vascular connections from the donor face to the recipient typically takes approximately one hour, during which time the patient’s blood flow must be stopped. “If there are absent or missing bony structures needed for reconstruction, we can make modifications based on the 3-D printed model prior to the actual transplantation, instead of taking the time to do alterations during ischemia time,” Dr. Rybicki said. “The 3-D model is important for making the transplant cosmetically appealing.”

Moreover, the researchers reported they employed the models in the operating room to optimize the surgeons’ understanding of the anatomy of the recipient’s face during the procedure. “You can spin, rotate and scroll through as many CT images as you want but there’s no substitute for having the real thing in your hand,” Dr. Rybicki said. “The ability to work with the model gives you an unprecedented level of reassurance and confidence in the procedure.”

Senior surgeons and radiologists involved in the five face transplantations agreed that the 3-D printed models provided superior preoperative data and allowed complex anatomy and bony defects to be better appreciated, reducing total procedure time. “Less time spent in the operating room is better for overall patient outcomes,” Dr. Pomahac added.

Based on the results of this study, 3-D printing is now regularly used for surgical planning for face transplantation procedures at Brigham and Women’s Hospital, and 3-D printed models may be implemented in other complicated surgeries.

Related Links:

Brigham and Women’s Hospital


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Compact C-Arm
Arcovis DRF-C S21

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more