HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Diagnostic Tool on Horizon for Surgeons Treating Cancer Patients

By HospiMedica International staff writers
Posted on 05 Jul 2015
Print article
Image: The droplet-based surface sampling probe, a newly developed mass spectrometry-based technology, speeds the process of analyzing a cancer patient liver biopsy sample (Photo courtesy of Oak Ridge National Laboratory).
Image: The droplet-based surface sampling probe, a newly developed mass spectrometry-based technology, speeds the process of analyzing a cancer patient liver biopsy sample (Photo courtesy of Oak Ridge National Laboratory).
Image: A droplet-based surface sampling probe mass spectrometry diagnostic tool was successfully used in a proof-of-concept study profiling of hormones in human pituitary gland and tumor thin tissue sections (Photo courtesy of Kertesz V et al., 2015, and the journal Analytical and Bioanalytical Chemistry).
Image: A droplet-based surface sampling probe mass spectrometry diagnostic tool was successfully used in a proof-of-concept study profiling of hormones in human pituitary gland and tumor thin tissue sections (Photo courtesy of Kertesz V et al., 2015, and the journal Analytical and Bioanalytical Chemistry).
Researchers have successfully developed a new tool that may enable surgeons to determine if a biopsy tissue is cancerous while their patients are still on the operating table, without routinely requiring microscope-based pathology analysis of the tissue.

The tool, developed by a team of researchers from the Department of Energy (DOE)'s Oak Ridge National Laboratory (ORNL; Oak Ridge, TN, USA) and the Harvard Medical School teaching hospital Brigham & Women’s Hospital (Boston, MA, USA), is a new mass spectrometry (MS)-based technology—an automated droplet-based surface-sampling probe that accomplishes in about 10 minutes what currently takes 20–30 minutes. First author Dr. Vilmos Kertesz of ORNL expects the time to soon be further cut to 5 minutes.

The system has been successfully used for spatially resolved sampling and detection of drugs and metabolites from thin sections of animal tissue as well as of proteins from dried blood. For the proof-of-concept study, the researchers rapidly profiled two hormones from human pituitary tissue.

“Instead of having to cut and mount tissue and wait for a trained pathologist to review the sample under a microscope, a technician might soon perform an equally conclusive test in the operating environment,” said Dr. Kertesz. The technology may also become an attractive alternative to the traditional diagnostic method of biomarker testing with immunohistochemistry (IHC). Although IHC provides a high degree of spatial recognition, it is time consuming and is limited by the quality and specificity of the antibody.

The success of this work can be traced back to patents resulting from previous DOE projects and it advances the liquid microjunction surface sampling probe technology first patented by ORNL. Currently ORNL houses the only laboratories worldwide that have this automated droplet-based surface sampling probe and the requisite software.

While other MS-based techniques (such as desorption electrospray ionization and rapid evaporative ionization) are being evaluated for classifying tumors and providing prognostic information, they are limited mainly to analysis of lower molecular weight biomolecules. The new droplet-based method overcomes this limitation. “The ability to quickly characterize the tissue distribution of larger macromolecular biomarkers like peptides and proteins would harness the diagnostic value of validated IHC approaches for surgical decision-making,” said Dr. Kertesz, “On the basis of the results and the relative simplicity, rapidity, and specificity of our method, there is great potential for our technology to assist surgeons in the detection of cancer from tissue biopsy samples.”

The study, Kertesz V et al., was published June 18, 2015, in the journal Analytical and Bioanalytical Chemistry.

Related Links:

Oak Ridge National Laboratory
Brigham & Women’s Hospital 


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Surgical Table
STERIS 5085 SRT

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more