HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Imaging Tool Increases Safety of Brain Surgery

By HospiMedica International staff writers
Posted on 25 Oct 2015
Print article
Image: Normal brain containing axons (left) under SRS microscopy, compared to disordered brain tumor tissue (right) (Photo courtesy of U-M).
Image: Normal brain containing axons (left) under SRS microscopy, compared to disordered brain tumor tissue (right) (Photo courtesy of U-M).
A new stimulated Raman scattering (SRS) microscopic technology may help surgeons differentiate between tumor and normal brain tissue in real-time.

Under development at the University of Michigan Health System (U-M; Ann Arbor, MI, USA), New York University (NYU; NY, USA), and other institutions, the SRS microscopy technique is used to produce different signals for proteins and lipids, which can then be assigned a color—blue and green, respectively—to differentiate between brain cortex, tumor tissue, and white matter. To make the approach amenable to routine use in neuropathology, the researchers created an objective classifier that integrates image characteristics (such as protein/lipid ratio, axonal density, and degree of cellularity), into one output that can alert pathologists to tumor infiltration.

The classifier was built using more than 1,400 images from patients with glioblastoma and epilepsy, and can distinguish between tumor-infiltrated and non-tumor regions with over 99% accuracy, regardless of tumor grade or histologic subtype. A subsequent study of biopsies taken from adult and pediatric patients with glioblastoma revealed not only distinctive features with SRS microscopy, but also the presence of infiltrating cells in tissues that appeared otherwise normal when examined with traditional staining techniques. The study was published on October 14, 2015, in Science Translational Medicine.

“SRS imaging technology could be used to complement existing neurosurgical workflows, allowing for rapid and objective characterization of brain tissues and, in turn, clinical decision-making,” concluded lead author neurosurgeon Daniel Orringer, MD, of U-M, and colleagues. “It allows the surgical decision-making process to become data driven instead of relying on the surgeon's best guess. We're able to visualize tumor that otherwise would be invisible to the surgeon in the operating room.”

“This technology has the potential to resolve a long-standing issue in cancer surgery, which is the need for faster and more effective methods to assess whether a tumor has been fully removed,” added Richard Conroy, PhD, of the US National Institutes of Health (NIH; Bethesda, MD, USA), which provided funding for the development of the technology. “The ability to determine tumor margins without having to send samples to a pathologist could increase patient safety and improve outcomes by shortening the length of surgeries and reducing the number of cases where cancer cells are left behind.”

Related Links:

University of Michigan Health System
New York University
US National Institutes of Health


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more