We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Intelligent Dressing Colorimetrically Detects Wound Pathogens

By HospiMedica International staff writers
Posted on 11 Nov 2015
Print article
Image: The intelligent hydrogel wound dressing (Photo courtesy of the University of Bath).
Image: The intelligent hydrogel wound dressing (Photo courtesy of the University of Bath).
A prototype hydrogel wound dressing emits a fluorescent light when coming in contact with prevalent pathogens found within wound biofilms.

The dressing, developed by researchers at the University of Bath (United Kingdom) and Queen Victoria Hospital (QVH; East Grinstead, United Kingdom), is made of a hydrated agarose film in which vesicles containing the fluorescent dye were mixed with agarose and dispersed within the hydrogel matrix. Static and dynamic models of wound biofilm growth in clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were then established on a nanoporous polycarbonate membrane.

The dressing’s response to the different biofilms was then evaluated. The researchers found a clear fluorescent response within four hours of the initial inoculation of the biofilm, but for an established biofilm produced by a pathogenic strain, the response was within minutes. The sensitivity of the dressing to the biofilms was dependent on the species and strain types of the bacterial pathogens involved, but a relatively higher response was observed in strains considered good biofilm formers.

There was also a clear distinction in the levels of dressing response, wherein dressings that were tested on bacteria grown in biofilm or in planktonic cultures responded differently, suggesting that the level of expression of virulence factors is dependent on the growth mode. The researchers also demonstrated the efficacy of the wound dressing in an ex vivo porcine skin model of burn wound infection. The study was published in the October 22, 2015, issue of ACS Applied Materials & Interfaces.

“All wounds have some bacteria; whilst they are kept in check by immune clearance this is not a problem, but when bacteria start to form biofilms and critically colonize the wound, pathogenic changes can result,” said senior author Toby Jenkins, PhD, and colleagues. “The early detection of wound infection in situ can dramatically improve patient care pathways and clinical outcomes. Our dressing will measure this critical colonization point.”

A biofilm is any group of adherent microorganisms that are embedded within a self-produced matrix of extracellular polymeric substance (EPS), a conglomeration generally composed of extracellular DNA, proteins, and polysaccharides, which is also referred to as slime. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which float or swim in a liquid medium.

Related Links:

University of Bath
Queen Victoria Hospital


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Illuminator
Trimline Basic

Print article

Channels

Surgical Techniques

view channel
Image: ‘Wraparound’ implants represent a new approach to treating spinal cord injuries (Photo courtesy of 123RF)

Tiny Wraparound Electronic Implants to Revolutionize Treatment of Spinal Cord Injuries

The spinal cord functions as a vital conduit, transmitting nerve impulses to and from the brain, much like a highway. When the spinal cord is damaged, this flow of information is disrupted, leading to... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more