We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Virtual Reality Simulators Help Determine Neurosurgeon Expertise

By HospiMedica International staff writers
Posted on 14 Aug 2019
Print article
Image: A new study claims VR simulators can help categorize neurosurgeon expertise (Photo courtesy of Helmut Bernhard/ NEURO).
Image: A new study claims VR simulators can help categorize neurosurgeon expertise (Photo courtesy of Helmut Bernhard/ NEURO).
Virtual reality (VR) simulators may soon be capable of classifying surgical expertise with high precision, claims a new study.

Researchers at McGill University (Montreal, Canada) and Amirkabir University of Technology (Tehran, Iran) conducted a study that included 50 participants in order to identify surgical and operative factors--as selected by a machine learning algorithm--that could be used to quantify psychomotor skills and generate data sets that could be used classify levels of expertise in a VR surgical procedure. For the study, the participants conducted tumor resections using the NeuroVR, a VR simulator that records all instrument movements in 20 millisecond intervals.

Study participants were recruited from four stages of neurosurgical training. They were classified as expert (neurosurgery staff), seniors (neurosurgical fellows and senior residents), juniors (neurosurgical junior residents), and medical students, all of whom participated in 250 simulated resections. Through an iterative process, performance metrics associated with instrument movement and force, resection of tissues, and bleeding generated from the raw simulator data output were selected to most accurately determine group membership.

The results showed that a K-nearest neighbor algorithm had an accuracy of 90% (45 of 50), a naive Bayes algorithm had an accuracy of 84%, a discriminant analysis algorithm had an accuracy of 78%, and a support vector machine algorithm had an accuracy of 76%. The K-nearest neighbor algorithm used six performance metrics to classify participants, the naive Bayes algorithm used 9 performance metrics, the discriminant analysis algorithm used 8 performance metrics, and the support vector machine algorithm used 8 performance metrics. The study was published on August 2, 2019, in the Journal of the American Medical Association (JAMA).

“Physician educators are facing increased time pressure to balance their commitment to both patients and learners,” said senior author Rolando Del Maestro, PhD, of the McGill Neurosurgical Simulation and Artificial Intelligence Learning Centre (NEURO). “Our study proves that we can design systems that deliver on-demand surgical assessments at the convenience of the learner and with less input from instructors. It may also lead to better patient safety by reducing the chance for human error both while assessing surgeons and in the operating room.”

Current training for surgeons is largely confined to classroom lessons and viewing cadaver-based teaching, with limited hands-on time actually spent on cadavers by students themselves.

Related Links:
McGill University
Amirkabir University of Technology

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Baby Warmer
THERMOCARE Convenience

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more