We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Peptide-Based Wound Dressing Kills Bacteria Efficiently

By HospiMedica International staff writers
Posted on 19 Aug 2020
Print article
Image: Functionalized cellulose membranes can kill bacteria in wounds (Photo courtesy of Empa)
Image: Functionalized cellulose membranes can kill bacteria in wounds (Photo courtesy of Empa)
An advanced wound dressing that contains cellulose membranes with bifunctional peptides shows potent antimicrobial activity, according to a new study.

Developed at the Swiss Federal Laboratories for Materials Science and Technology (Empa; Dübendorf, Switzerland), the dressings, made from plant‐derived cellulose fibers with a diameter of less than one micrometer, are electrospun into a delicate multi-layered, three-dimensional (3D) fabric that also contains the polymer polyurethane. The cellulose membrane contains a bifunctional peptide which combines an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), with tight control over peptide concentrations.

The fiber scaffold of the fibroblast cytocompatible membranes are saturated with such bifunctional peptides, affecting bacteria via multiple modes of action, reducing evolutionary pressure selecting for antibiotic resistance. In cell cultures, the dressing exhibited a log4 reduction against Staphylococcus aureus, and a log1 reduction against Pseudomonas aeruginosa. In addition, using the cell adhesive CBP induced a 2.2‐fold increase in cell spreading, compared to pristine cellulose. The study was published in the July 2020 issue of Advanced Healthcare Materials.

“In bacterial cultures, over 99.99% of the germs were killed by the peptide-containing membranes. In future, the antimicrobial membranes will be equipped with additional functions,” said co-senior author Katharina Maniura-Weber, PhD, of the Empa Biointerfaces lab. “The peptides might, for instance, be functionalized with binding sites that enable the controlled release of further therapeutic substances.”

AMPs are potent, broad spectrum therapeutic agents that have been shown to kill both Gram positive and gram negative bacteria, enveloped viruses, fungi, and even some cancerous cells. Unlike antibiotic drugs, AMPs appears to destabilize biological membranes, can form transmembrane channels, and may have the ability to function as immunomodulators by altering host gene expression, inducing chemokine production, promoting wound healing, and modulating the responses of dendritic cells and cells of the adaptive immune response.

Related Links:

Swiss Federal Laboratories for Materials Science and Technology

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Baby Warmer
THERMOCARE Convenience

Print article

Channels

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more