We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Automated Persufflation Container Preserves Donor Organs Longer

By HospiMedica International staff writers
Posted on 24 Aug 2020
Print article
Image: The ScubaTx organ preservation system (Photo courtesy of ScubaTx)
Image: The ScubaTx organ preservation system (Photo courtesy of ScubaTx)
An innovative preservation system controls and monitors gas distribution through the transplant, maintained the quality of donated organs for extended periods of time.

The ScubaTx (Newcastle, United Kingdom) ScubaTx System is comprised of a small, portable, multi-organ base unit and a portfolio of consumables that optimize organ-specific persufflation (PSF), which includes three stages. First, the organ is submerged in cold saline in order to decrease the kinetics of metabolic activities; second, humidified oxygen-rich gas is delivered through the vasculature to reduce hypoxia; and third, the process is controlled via the PSF-Autopilot software platform in order to control humidity and pressure levels, so that perfusion is delivered without tissue damage.

The PSF-Autopilot platform is comprised of an integrated array of software technologies that automate the PSF process without the need for additional interventions. Each organ transport uses organ-specific consumables that prevent human error, reuse, or counterfeiting. On receipt of the organ, the surgeon receives a simple, guided, actionable summary of the organ’s transport history, backed-up by full data. A smartphone app allows close monitoring of the entire transportation chain, over greater distances, and without the need for constant intervention by a medical technician.

“Persufflation has historically relied on highly trained technicians to monitor and adjust gas flows during transport,” said Bill Scott, MD, scientific director of the transplant regenerative medicine laboratory at Newcastle University and chief science officer of ScubaTx. “The breakthrough with ScubaTx is the use of state-of-the-art technologies to create an automated device that is simple to use and can be deployed in health services internationally at scale.”

The mainstay of traditional organ preservation is cold ischemic storage (essentially an ice-box). Although it is intended to reduce the extent of organ damage during transport, significant deterioration of the donated organ still occurs; the longer the organ is kept on ice, the greater the damage. Moreover, the cold storage technique does not enable resuscitative assessment while the organ is being transported from donor to recipient.

Related Links:
ScubaTx

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Baby Warmer
THERMOCARE Convenience

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more