We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New COVID-19 Test Uses Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2 Virus in 30 Seconds

By HospiMedica International staff writers
Posted on 16 Oct 2020
Print article
Image: Testing a nanotube-based electrochemical biosensor (Photo courtesy of University of Nevada)
Image: Testing a nanotube-based electrochemical biosensor (Photo courtesy of University of Nevada)
A new COVID-19 rapid test that uses a nanotube-based electrochemical biosensor has shown successful lab results by detecting the SARS-CoV-2 virus in about 30 seconds.

Engineers and virologists at the University of Nevada (Reno, NV, USA) have teamed up to develop a novel COVID-19 testing approach based on a similar technology used in the past for detecting tuberculosis and colorectal cancer as well as detection of biomarkers for food safety. Using their expertise in detecting a specific biomarker in the breath of tuberculosis patients using a metal functionalized nano sensor, the researchers have developed a SARS-CoV-2 test that does not require a blood sample and is run using a nasal swab or even exhaled breath, which has biomarkers of COVID-19. The developed approach also has the potential for diagnosis of other respiratory viral diseases by identifying appropriate metallic elements to functionalize nanotubes.

The researchers first synthesized and prepared the antigenic protein of COVID-19 virus in their laboratory, SARS-CoV-2 receptor binding domain protein, for the preliminary testing and determining the sensitivity of the nano sensor. The team developed co-metal functionalized nanotubes as a sensing material for electrochemical detection of the protein. They confirmed the biosensor’s potential for clinical application by directly analyzing the RBD of the Spike glycoprotein on the sensor. The team now plans to move to the next step of sensor validation on the actual COVID-19 patients swabs stored in the Viral Transport Medium (VTM) and have applied for funding to develop a specific and inexpensive point-of-care sensor for a rapid detection of COVID-19 virus in saliva or breath of infected individuals.

“This is Point of Care testing to assess the exposure to COVID-19. We do not need a laboratory setting or trained health care workers to administer the test. Electrochemical biosensors are advantageous for sensing purposes as they are sensitive, accurate and simple,” said Professor Misra, in the University’s College of Engineering Chemical and Materials Department.

Related Links:
University of Nevada

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Workstation
X40

Print article

Channels

Critical Care

view channel
Image: A demonstration of the on-skin wearable bioelectronic device (Photo courtesy of University of Missouri)

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

A team of researchers at the University of Missouri (Columbia, MO, USA) has achieved a milestone in developing a state-of-the-art on-skin wearable bioelectronic device. This development comes from a lab... Read more

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more